

LEARNING FROM TIME-DEPENDENT STREAMING DATA WITH ONLINE STOCHASTIC ALGORITHMS

Nicklas Werge

Ph.D. Defence: Thursday 29th September, 2022

Supervised by Antoine Godichon-Baggioni and Olivier Wintenberger

Learning schemes

Stochastic optimization

Convergence analysis

Some final remark 000 References

Figure 1: Large- and small-scale learning vs. learning from streaming data

Examples of streaming data. Internet traffic (e.g., tweets, search engines, advertising), self-driving cars, financial investments, electricity management from solar or wind, weather data and other sensor data.

Stochastic optimization

Convergence analysis

Some final remarks 000

Why use SG-based methods for streaming data?

Common optimization problem,

$$\min_{\theta \in \mathbb{R}^d} \left\{ L_n(\theta) = \frac{1}{n} \sum_{t=1}^n l_t(\theta) \right\}, \quad \text{(empirical risk)}$$
(1)

where (l_t) is a sequence of random differentiable functions from \mathbb{R}^d to \mathbb{R} .

Why use SG-based methods for streaming data?

Common optimization problem,

$$\min_{\theta \in \mathbb{R}^d} \left\{ L_n(\theta) = \frac{1}{n} \sum_{t=1}^n l_t(\theta) \right\}, \quad \text{(empirical risk)}$$
(1)

where (l_t) is a sequence of random differentiable functions from \mathbb{R}^d to \mathbb{R} . What is the computational cost of solving (1)? Learn once

- Batch gradient descent costs $\mathcal{O}(ndk)$ with k iterations.
- Stochastic Gradient (SG) descent costs $\mathcal{O}(nd)$.^a

^aBB07

Stochastic optimization

Convergence analysis

Some final remarks 000

Why use SG-based methods for streaming data?

Common optimization problem,

$$\min_{\theta \in \mathbb{R}^d} \left\{ L_n(\theta) = \frac{1}{n} \sum_{t=1}^n l_t(\theta) \right\}, \quad \text{(empirical risk)}$$
(1)

where (l_t) is a sequence of random differentiable functions from \mathbb{R}^d to \mathbb{R} . What is the computational cost of **updating** (1)? *Learn continually*

- Batch gradient descent costs
 \$\mathcal{O}(ndk)\$ with k iterations.
- Stochastic Gradient (SG) descent costs O(d).

Deploy continually

Introduction ○●○○ Stochastic optimization

Convergence analysis

Some final remarks 000

Why use SG-based methods for streaming data?

Common optimization problem,

$$\min_{\theta \in \mathbb{R}^d} \left\{ L_n(\theta) = \frac{1}{n} \sum_{t=1}^n l_t(\theta) \right\}, \quad \text{(empirical risk)}$$
(1)

where (l_t) is a sequence of random differentiable functions from \mathbb{R}^d to \mathbb{R} . What is the computational cost of **updating** (1)? *Learn continually*

- Batch gradient descent costs O(ndk) with k iterations.
- Stochastic Gradient (SG) descent costs O(d).

Deploy continually

Takeaway. For streaming with large n (and d) \Rightarrow SG-based methods.

Stochastic optimization

Some final remarks 000 References

Examples of applications for (1)

Let $X_t \in \mathcal{X}$ (inputs) and $Y_t \in \mathcal{Y}$ (outputs/labels),

$$l_t(\theta) = l(Y_t, h_\theta(X_t)) + \lambda \Omega(\theta), \quad \lambda \ge 0,$$
(2)

where $h_{\theta}(X_t) : \mathcal{X} \to \mathbb{R}$ (predictor), $l : \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ (loss) and $\Omega(\theta) : \mathbb{R}^d \to \mathbb{R}$ (regularizer).

Examples of applications for (1)

Let $X_t \in \mathcal{X}$ (inputs) and $Y_t \in \mathcal{Y}$ (outputs/labels),

$$l_t(\theta) = l(Y_t, h_\theta(X_t)) + \lambda \Omega(\theta), \quad \lambda \ge 0,$$
(2)

where $h_{\theta}(X_t) : \mathcal{X} \to \mathbb{R}$ (predictor), $l : \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ (loss) and $\Omega(\theta) : \mathbb{R}^d \to \mathbb{R}$ (regularizer).

Typical examples:

- **Regression**: $\mathcal{Y} = \mathbb{R}$, $h_{\theta}(X_t) = \langle \theta, X_t \rangle$, $l = \frac{1}{2}(Y_t h_{\theta}(X_t))^2$, $\Omega(\theta) = \|\theta\|_1$ or $\Omega(\theta) = \|\theta\|_2^2$.
- Classification: $\mathcal{Y} = \{-1, 1\}$, $h_{\theta}(X_t) = \langle \theta, X_t \rangle$, $l = \phi(Y_t h_{\theta}(X_t))$, where ϕ , e.g., is $\max\{0, 1-u\}$ or $\log(1+e^{-u})$.

Examples of applications for (1)

0000

Let $X_t \in \mathcal{X}$ (inputs) and $Y_t \in \mathcal{Y}$ (outputs/labels),

$$l_t(\theta) = l(Y_t, h_\theta(X_t)) + \lambda \Omega(\theta), \quad \lambda \ge 0,$$
(2)

where $h_{\theta}(X_t) : \mathcal{X} \to \mathbb{R}$ (predictor), $l : \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ (loss) and $\Omega(\theta) : \mathbb{R}^d \to \mathbb{R}$ (regularizer).

Other examples:

- Geometric median (our example in this talk).
- Quasi-maximum likelihood for non-linear time series models.
- Neural networks for deep learning.

where $h_{\theta}(X_t) : \mathcal{X} \to \mathbb{R}$ (predictor), $l : \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ (loss) and $\Omega(\theta) : \mathbb{R}^d \to \mathbb{R}$ (regularizer).

Other examples:

- Geometric median (our example in this talk).
- Quasi-maximum likelihood for non-linear time series models.
- Neural networks for deep learning.

Takeaway. There are many examples for applications, e.g., see Teo et al. [Teo+07], Hastie et al. [Has+09], Kushner and Yin [KY03], and Nesterov et al. [Nes+18] for examples of losses and their derivatives.

Introduction ○○○●

Stochastic optimization

Convergence analysis

Some final remarks 000 References

Research aims and objectives

Main goals. The central theme of this thesis is to learn from time-dependent streaming data, where traditional optimization techniques are unsustainable due to their high computational cost.

Research aims and objectives

Main goals. The central theme of this thesis is to learn from time-dependent streaming data, where traditional optimization techniques are unsustainable due to their high computational cost.

We want to explore the robustness and convergence guarantees of SG-based methods under various settings. In short, the main goals are

- **I** to allow learning algorithms to handle streaming data and
- to improve learning by adapting streaming learning to the difficulty of the problem; the level of dependence, noise, and convexity.

Some final remarks

References

Research aims and objectives

Main goals. The central theme of this thesis is to learn from time-dependent streaming data, where traditional optimization techniques are unsustainable due to their high computational cost.

Summary of Ph.D.:

- Chapter 2 [GBWW21]: Antoine Godichon-Baggioni, Nicklas Werge, and Olivier Wintenberger. "Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Streaming Data". In: arXiv preprint arXiv:2109.07117 (2021).
- Chapter 3 [GBWW22]: Antoine Godichon-Baggioni, Nicklas Werge, and Olivier Wintenberger. "Learning from time-dependent streaming data with online stochastic algorithms". In: arXiv preprint arXiv:2205.12549 (2022).
- Chapter 4 [WW22]: Nicklas Werge and Olivier Wintenberger. "AdaVol: An adaptive recursive volatility prediction method". In: *Econometrics and Statistics* 23 (2022), pp. 19–35.

Appendix [Wer21]: Nicklas Werge. "Predicting risk-adjusted returns using an asset independent regime-switching model". In: *Expert Systems with Applications* 184 (2021), p. 115576. ISSN: 0957-4174.

Introduction ○○○● **Some final remark**: 000 References

Main goals. The central theme of this thesis is to learn from time-dependent streaming data, where traditional optimization techniques are unsustainable due to their high computational cost.

For this talk:

- Chapter 2 [GBWW21]: Learning from streaming data.
- Chapter 3 [GBWW22]: Learning from time-dependent streaming data.

Stochastic optimization ●○○○○

Convergence analysis

Some final remarks 000 References

Stochastic optimization

Stochastic Optimization (SO) problem

Minimize objectives $L : \mathbb{R}^d \to \mathbb{R}$, defined by

$$\theta^* := \underset{\theta \in \mathbb{R}^d}{\arg\min} \{ L(\theta) := \mathbb{E}[l_t(\theta)] \},$$
(3)

with $l_t : \mathbb{R}^d \to \mathbb{R}$ some random differentiable functions.

Stochastic optimization

Convergence analysis

Some final remark: 000 References

Stochastic optimization

Stochastic Optimization (SO) problem

Minimize objectives $L : \mathbb{R}^d \to \mathbb{R}$, defined by

$$\theta^* := \underset{\theta \in \mathbb{R}^d}{\arg\min} \{ L(\theta) := \mathbb{E}[l_t(\theta)] \},$$
(3)

with $l_t : \mathbb{R}^d \to \mathbb{R}$ some random differentiable functions.

How do we find the unique global minimizer θ^* of L in (3)?¹

L is minimized without evaluating it directly.

Instead, we **only** use noisy gradients of $l_t(\theta)$ as estimates.

¹Robbins and Monro [RM51]

Stochastic optimization

Convergence analysis

Some final remark: 000 References

Stochastic optimization

Stochastic Optimization (SO) problem

Minimize objectives $L : \mathbb{R}^d \to \mathbb{R}$, defined by

$$\theta^* := \underset{\theta \in \mathbb{R}^d}{\arg\min} \{ L(\theta) := \mathbb{E}[l_t(\theta)] \},$$
(3)

with $l_t : \mathbb{R}^d \to \mathbb{R}$ some random differentiable functions.

How to extend the SO problem to a streaming setting

At each time $t \in \mathbb{N}$, a **block** of $n_t \in \mathbb{N}$ random differentiable functions arrive,

$$l_t := (l_{t,1}, \ldots, l_{t,n_t}).$$

Stochastic optimization

Convergence analysis

Some final remarks 000 References

Some examples for streaming applications

Following (1) and (2), for some parameterization $\{h_{\theta}\}_{\theta \in \mathbb{R}^d}$, this requires to minimize

$$L_{N_t}(heta) = rac{1}{N_t} \sum_{i=1}^t l_i(heta), \quad ext{(empirical risk)}$$

where $N_t := \sum_{i=1}^t n_i$ denotes the accumulated sum of observations; here

$$l_t(\theta) = \sum_{j=1}^{n_t} l(Y_{t,j}, h_{\theta}(X_{t,j})) + \lambda \Omega(\theta),$$

where $X_t := (X_{t,1}, \ldots, X_{t,n_t})$ and $Y_t := (Y_{t,1}, \ldots, Y_{t,n_t})$ are the blocks of n_t observations that arrive at each t (a.k.a. streaming-batches).

Stochastic optimization

Convergence analysis

Some final remarks 000 References

How to we solve the SO problem in a streaming setting?

Stochastic Streaming Gradient (SSG)

The SSG is defined by the following recursion,

$$\theta_t = \theta_{t-1} - \frac{\gamma_t}{n_t} \sum_{i=1}^{n_t} \nabla_\theta l_{t,i} \left(\theta_{t-1}\right), \quad \theta_0 \in \mathbb{R}^d,$$
(4)

with learning rate (γ_t) satisfying $\sum_{i=1}^{\infty} \gamma_i = \infty$ and $\sum_{i=1}^{\infty} \gamma_i^2 < \infty$.

- $n_t = 1 \Rightarrow \text{SG descent (SGD) [RM51]}.$
- n_t constant \Rightarrow online mini-batches.
- n_t time-varying \Rightarrow streaming-batches.

Stochastic optimization

Convergence analysis

Some final remark: 000 References

Acceleration by averaging

Averaged SSG (ASSG)

The ASSG is derived for all $t \in \mathbb{N}$ by the recursion,

$$\bar{\theta}_t = \frac{1}{N_t} \sum_{i=0}^{t-1} n_{i+1} \theta_i, \ \bar{\theta}_0 = 0, \text{ with } (\theta_t) \text{ following (4)}, \tag{5}$$

where $N_t = \sum_{i=1}^t n_i$ denotes the accumulated sum of observations.

• $n_t = 1 \Rightarrow$ Polyak-Ruppert averaging SGD (ASGD) [PJ92; Rup88].

- n_t constant \Rightarrow online Polyak-Ruppert averaged mini-batches.
- n_t time-varying \Rightarrow Polyak-Ruppert averaged streaming-batches.

Stochastic optimization

Convergence analysis

Some final remark: 000 References

Acceleration by averaging

Averaged SSG (ASSG)

The ASSG is derived for all $t \in \mathbb{N}$ by the recursion,

$$\bar{\theta}_t = \frac{1}{N_t} \sum_{i=0}^{t-1} n_{i+1} \theta_i, \ \bar{\theta}_0 = 0, \text{ with } (\theta_t) \text{ following (4)}, \tag{5}$$

where $N_t = \sum_{i=1}^t n_i$ denotes the accumulated sum of observations.

Stochastic streaming algorithms combines SG-based methods'

- 1 applicability,
- 2 computational benefits,
- **3** variance-reducing properties through mini-batching, and
- 4 the accelerated convergence from Polyak-Ruppert averaging.

Convergence analysis

Some final remarks

Overview of stochastic streaming algorithms (pseudo code)

Algorithm 1: Stochastic streaming algorithms (SSG/ASSG)

Takeaway. Each update is cheap with a computational costs of $O(n_t d)$. A batch gradient costs $O(N_t dk)$ after k iterations.

Convergence analysis

Some final remarks

References

Overview of stochastic streaming algorithms (pseudo code)

Algorithm 2: Stochastic streaming algorithms (SSG/ASSG)

Takeaway. Each update is cheap with a computational costs of $O(n_t d)$. A batch gradient costs $O(N_t dk)$ after k iterations.

Projected stochastic streaming algorithms \rightarrow [GBWW21; GBWW22].

Stochastic optimization

Convergence analysis

Some final remark: 000 References

What is our goals? How do we evaluate?

• Our **objective** is to provide non-asymptotic bounds of

$$\delta_t = \mathbb{E}[\|\theta_t - \theta^*\|^2]$$
 and $\bar{\delta}_t = \mathbb{E}[\|\bar{\theta}_t - \theta^*\|^2].$

Stochastic optimization

Convergence analysis

Some final remark: 000 References

What is our goals? How do we evaluate?

• Our objective is to provide non-asymptotic bounds of

$$\delta_t = \mathbb{E}[\|\theta_t - \theta^*\|^2]$$
 and $\bar{\delta}_t = \mathbb{E}[\|\bar{\theta}_t - \theta^*\|^2].$

• Learning rates (γ_t) on the form:

 $\gamma_t = C_\gamma n_t^\beta t^{-\alpha},$

with $C_{\gamma}>0,\ \beta\in[0,1)$ and α chosen accordingly to the streaming-batches.

Stochastic optimization

Convergence analysis

Some final remark

References

What is our goals? How do we evaluate?

• Our **objective** is to provide non-asymptotic bounds of

$$\delta_t = \mathbb{E}[\|\theta_t - \theta^*\|^2] \quad \text{and} \quad \bar{\delta}_t = \mathbb{E}[\|\bar{\theta}_t - \theta^*\|^2].$$

• Learning rates (γ_t) and streaming-batches (n_t) on the form:

$$\gamma_t = C_\gamma n_t^\beta t^{-\alpha}$$
 and $n_t = C_\rho t^
ho,$

with $C_{\gamma} > 0$, $C_{\rho} \in \mathbb{N}$, $\beta, \rho \in [0, 1)$ and α chosen accordingly to the streaming-batches.

- Classical SG-based methods: $n_t = 1$, i.e., $\{C_{\rho} = 1, \rho = 0\}$.
- Constant streaming-batches (online mini-batch): $n_t = C_{\rho}$, i.e., $\{C_{\rho} \in \mathbb{N}, \rho = 0\}$, with streaming-batch size C_{ρ} .
- Time-varying streaming-batches: $n_t = C_{\rho} t^{\rho}$ with $C_{\rho} \in \mathbb{N}$ and streaming rate $\rho \in [0, 1)$.¹

¹Note that [GBWW21] considered $\rho \in (-1, 1)$.

Stochastic optimization

Convergence analysis

Some final remark

References

What is our goals? How do we evaluate?

• Our **objective** is to provide non-asymptotic bounds of

$$\delta_t = \mathbb{E}[\|\theta_t - \theta^*\|^2] \text{ and } \bar{\delta}_t = \mathbb{E}[\|\bar{\theta}_t - \theta^*\|^2].$$

• Learning rates (γ_t) and streaming-batches (n_t) on the form:

$$\gamma_t = C_\gamma n_t^eta t^{-lpha} \quad ext{and} \quad n_t = C_
ho t^
ho,$$

with $C_{\gamma}>0,$ $C_{\rho}\in\mathbb{N},$ $\beta,\rho\in[0,1)$ and α chosen accordingly to the streaming-batches.

What has been done until now?

- Classical setting with n_t = 1 (i.e., {C_ρ = 1, ρ = 0}) using independent unbiased gradients [MB11].
- Streaming setting using independent unbiased gradients [GBWW21].
- Streaming setting using dependent biased gradients [GBWW22].

Convergence analysis

Some final remarks 000 References

Convexity and smoothness of the objectives

Assume the following about the objectives $L : \mathbb{R}^d \to \mathbb{R}$:

• L has unique global minimizer $\theta^* \in \mathbb{R}^d$ such that $\nabla_{\theta} L(\theta^*) = 0$.

Convergence analysis

Some final remarks 000 References

Convexity and smoothness of the objectives

Assumption (Convexity and smoothness of the objectives)

Assume the following about the objectives $L : \mathbb{R}^d \to \mathbb{R}$:

- L has unique global minimizer $\theta^* \in \mathbb{R}^d$ such that $\nabla_{\theta} L(\theta^*) = 0$.
- L is μ -quasi-strongly convex;¹

$$\exists \mu > 0, \forall \theta \in \mathbb{R}^{d}, L(\theta^{*}) \geq L(\theta) + \langle \nabla_{\theta} L(\theta), \theta^{*} - \theta \rangle + \frac{\mu}{2} \|\theta^{*} - \theta\|^{2}$$

 $^1\mathsf{E.g.},$ see Bach and Moulines [BM13] and Gadat and Panloup [GP17] for non-convex objectives.

Convexity and smoothness of the objectives

Assumption (Convexity and smoothness of the objectives)

Assume the following about the objectives $L : \mathbb{R}^d \to \mathbb{R}$:

- L has unique global minimizer $\theta^* \in \mathbb{R}^d$ such that $\nabla_{\theta} L(\theta^*) = 0$.
- *L* is *µ*-quasi-strongly convex;

 $\exists \mu > 0, \forall \theta \in \mathbb{R}^d, L(\theta^*) \ge L(\theta) + \langle \nabla_{\theta} L(\theta), \theta^* - \theta \rangle + \frac{\mu}{2} \|\theta^* - \theta\|^2.$

■ L has C_∇-Lipschitz continuous gradients;

 $\exists C_{\nabla} > 0, \forall \theta, \theta' \in \mathbb{R}^{d}, \|\nabla_{\theta} L(\theta) - \nabla_{\theta} L(\theta')\| \le C_{\nabla} \|\theta - \theta'\|.$ (6)

• The Hessian of L is C'_{∇} -Lipschitz-continuous;

 $\exists C_{\nabla}' > 0, \forall \theta, \theta' \in \mathbb{R}^d, \|\nabla_{\theta}^2 L(\theta) - \nabla_{\theta}^2 L(\theta')\| \le C_{\nabla}' \|\theta - \theta'\|.$ (7)

Observe that the Lipschitz smoothness assumptions in (6) and (7) **only** needs to hold for the averaged estimate $\bar{\theta}_t$ in (5).

Learning from streaming data

Let (l_t) be a sequence of **independent** differentiable random functions possibly non-convex and their gradients **unbiased** estimates of $\nabla_{\theta} L$.¹

Assumption 1 (unbiased gradients, κ -expected smoothness, σ -gradient noise)

Assume the following about $l_{t,i}$ for each $t \in \mathbb{N}$ with $i = 1, \ldots, n_t$. For some positive integer p, there exists $\kappa, \sigma > 0$ such that

 $\blacksquare \mathbb{E}[\nabla_{\theta} l_{t,i}(\theta)] = \nabla_{\theta} L(\theta),$

 1 E.g., see Nesterov et al. [Nes+18] for definitions and properties of such functions. Learning from time-dependent streaming data with online stochastic algorithms – Nicklas Werge

Learning from streaming data

Let (l_t) be a sequence of **independent** differentiable random functions possibly non-convex and their gradients **unbiased** estimates of $\nabla_{\theta} L$.¹

Assumption 1 (unbiased gradients, κ -expected smoothness, σ -gradient noise)

Assume the following about $l_{t,i}$ for each $t \in \mathbb{N}$ with $i = 1, \ldots, n_t$. For some positive integer p, there exists $\kappa, \sigma > 0$ such that

$$\mathbf{E}[\nabla_{\theta} l_{t,i}(\theta)] = \nabla_{\theta} L(\theta),$$

 $= \mathbb{E}[\|\nabla_{\theta}l_{t,i}(\theta) - \nabla_{\theta}l_{t,i}(\theta')\|^p] \le \kappa^p \mathbb{E}[\|\theta - \theta'\|^p],$

¹E.g., see Nesterov et al. [Nes+18] for definitions and properties of such functions.

Learning from streaming data

Let (l_t) be a sequence of **independent** differentiable random functions possibly non-convex and their gradients **unbiased** estimates of $\nabla_{\theta} L$.¹

Assumption 1 (unbiased gradients, κ -expected smoothness, σ -gradient noise)

Assume the following about $l_{t,i}$ for each $t \in \mathbb{N}$ with $i = 1, \ldots, n_t$. For some positive integer p, there exists $\kappa, \sigma > 0$ such that

$$\mathbf{E}[\nabla_{\theta} l_{t,i}(\theta)] = \nabla_{\theta} L(\theta),$$

$$\blacksquare \mathbb{E}[\|\nabla_{\theta}l_{t,i}(\theta) - \nabla_{\theta}l_{t,i}(\theta')\|^{p}] \le \kappa^{p}\mathbb{E}[\|\theta - \theta'\|^{p}],$$

$$\blacksquare \mathbb{E}[\|\nabla_{\theta} l_{t,i}(\theta^*)\|^p] \le \sigma^p, \, \forall \theta, \theta' \in \mathbb{R}^d.$$

¹E.g., see Nesterov et al. [Nes+18] for definitions and properties of such functions.

Learning from streaming data

Let (l_t) be a sequence of **independent** differentiable random functions possibly non-convex and their gradients **unbiased** estimates of $\nabla_{\theta} L^{,1}$

Assumption 1 (unbiased gradients, κ -expected smoothness, σ -gradient noise)

Assume the following about $l_{t,i}$ for each $t \in \mathbb{N}$ with $i = 1, \ldots, n_t$. For some positive integer p, there exists $\kappa, \sigma > 0$ such that

$$\blacksquare \mathbb{E}[\nabla_{\theta} l_{t,i}(\theta)] = \nabla_{\theta} L(\theta),$$

$$\blacksquare \mathbb{E}[\|\nabla_{\theta}l_{t,i}(\theta) - \nabla_{\theta}l_{t,i}(\theta')\|^{p}] \le \kappa^{p}\mathbb{E}[\|\theta - \theta'\|^{p}]$$

 $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_{t,i}(\theta^*)\|^p] \le \sigma^p, \, \forall \theta, \theta' \in \mathbb{R}^d.$

Takeaway. For SSG, we need Assumption 1 with p = 2, whereas for ASSG, we need p = 4.

 1 E.g., see Nesterov et al. [Nes+18] for definitions and properties of such functions. Learning from time-dependent streaming data with online stochastic algorithms – Nicklas Werge Stochastic optimization

Convergence analysis

Some final remark: 000 References

Learning from streaming data

Classical setting with
$$n_t = 1$$
 (i.e., $\{C_{\rho} = 1, \rho = 0\}$).

Theorem 1 (Moulines and Bach [MB11])

Under Assumption 1 with p = 2, there exists explicit constants $C_{\delta}, C'_{\delta}, C''_{\delta} > 0$ such that for $\alpha \in (1/2, 1)$:

$$\delta_t \le \frac{C_\delta \sigma^2}{\mu N_t^\alpha} + C'_\delta \exp(-\mu C''_\delta N_t^{1-\alpha}). \tag{8}$$

The bound in (8) can be divided into

- a noise term $C_{\delta}\sigma^2/\mu N_t^{\alpha}$ and
- a sub-exponential term $C'_{\delta} \exp(-\mu C''_{\delta} N_t^{1-\alpha})$.

Takeaway. We should focus on **reducing the noise term** without harming the natural decay of the sub-exponential term.

Stochastic optimization

Convergence analysis

Some final remark: 000 References

Learning from streaming data

Streaming setting with
$$n_t = C_{\rho}$$
 (i.e., $\{C_{\rho} \in \mathbb{N}, \rho = 0\}$).

Theorem 2 (SSG)

Under Assumption 1 for p = 2, there exists explicit constants $C_{\delta}, C'_{\delta}, C''_{\delta} > 0$ such that for $\alpha \in (1/2, 1)$:

$$\delta_t \le \frac{C_\delta \sigma^2}{\mu C_\rho^{1-\alpha-\beta} N_t^\alpha} + C_\delta' \exp\left(-\frac{\mu C_\delta'' N_t^{1-\alpha}}{C_\rho^{1-\alpha-\beta}}\right).$$
(9)

Takeaway.

- The noise term in (9) is divided by C^{1-α-β}_ρ, implying we achieve variance reduction by taking α + β < 1.</p>
- But this will not increase the convergence rate, which still is determined by $\alpha \in (1/2, 1)$.
Stochastic optimization

Convergence analysis

Some final remarks 000 References

Learning from streaming data

Streaming setting with $n_t = C_{\rho} t^{\rho}$ (i.e., $\{C_{\rho} \in \mathbb{N}, \rho \in [0, 1)\}$).

Theorem 3 (SSG)

Under Assumption 1 for p = 2, there exists explicit constants $C_{\delta}, C'_{\delta}, C''_{\delta} > 0$ such that for $\alpha - \beta \rho \in (1/2, 1)$:

$$\delta_t \le \frac{C_\delta \sigma^2}{\mu C_\rho^{1-\beta-\phi} N_t^\phi} + C_\delta' \exp\left(-\frac{\mu C_\delta'' N_t^{1-\phi}}{C_\rho^{1-\beta-\phi}}\right),\tag{10}$$

with $\phi = ((1 - \beta)\rho + \alpha)/(1 + \rho)$.

Takeaway.

- The **noise term** is scaled by $C_{\rho}^{1-\beta-\phi}$, implying we should take $\alpha + \beta < 1$ to obtain **variance reduction**.
- Increasing streaming rates (i.e., ρ > 0) can accelerate
 convergence, e.g., α = 2/3, β = 0, gives δ_t = O(N_t^{-(2/3+ρ)/(1+ρ)}).

Stochastic optimization

Convergence analysis

Some final remarks 000 References

Learning from streaming data

Acceleration by averaging. Consider the averaging estimate $(\bar{\theta}_n)$ given in (5) derived with use of (θ_t) from (4).

Assumption 2 (Covariance of scores $(\nabla_{\theta} l_{t,i}(\theta^*))$)

There exists a non-negative self-adjoint operator Σ such that $\mathbb{E}[\nabla_{\theta} l_{t,i}(\theta^*) \nabla_{\theta} l_{t,i}(\theta^*)^{\top}] \preceq \Sigma.$

Stochastic optimization

Convergence analysis

Some final remarks 000 References

Learning from streaming data

Theorem 4 (ASSG)

Under Assumption 1 for p=4 and Assumption 2, we have for $\alpha-\beta\rho\in(1/2,1):$

$$\bar{\delta}_t^{1/2} \le \frac{\Lambda^{1/2}}{N_t^{1/2}} + \mathcal{O}(\max\{N_t^{-1+\phi/2}, N_t^{-\phi}\}),\tag{11}$$

where
$$\Lambda = \operatorname{Tr}(\nabla_{\theta}^{2}L(\theta^{*})^{-1}\Sigma\nabla_{\theta}^{2}L(\theta^{*})^{-1})$$
 and $\phi = ((1-\beta)\rho + \alpha)/(1+\rho)$.

Takeaway.

- Λ/N_t achieves the desirable **Cramer-Rao bound**, obtaining the optimal rate of $\bar{\delta}_t = \mathcal{O}(N_t^{-1})$.
- $\mathcal{O}(\max\{N_t^{-1+\phi/2}, N_t^{-\phi}\})$ insinuate that $\phi = 2/3$, e.g., by $\alpha = 2/3$ and $\beta = 1/3 \Rightarrow$ robustly achieve $\mathcal{O}(N_t^{-4/3})$, $\forall \rho \in [0, 1)$.

Stochastic optimization

17/34

Learning from streaming data

Geometric median² is a generalization of the real median [Hal48], defined by

$$\theta^* := \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \{ L(\theta) := \mathbb{E}[\|X - \theta\| - \|X\|] \},\$$

with gradient $\nabla_{\theta} L(\theta) = \mathbb{E}[\nabla_{\theta} l_t(\theta)], \ \nabla_{\theta} l_t(\theta) = -(X_t - \theta)/||X_t - \theta||.$

Experiments

- Set d = 10 and fix $C_{\gamma} = \sqrt{10}$ and $\alpha = 2/3$ [CCZ13].
- (X_t) is standard Gaussian centered at $\theta = (-4, -3, 2, 1, 0, 1, 2, 3, 4, 5)^T \in \mathbb{R}^{10}$.
- Explore the errors for various data streams $n_t = C_\rho t^\rho$ with $N_t = 100000$ observations.

²E.g., see Kemperman [Kem87], Gervini [Ger08], and Godichon-Baggioni [GB16]. Learning from time-dependent streaming data with online stochastic algorithms - Nicklas Werge

Stochastic optimization

Convergence analysis

Some final remarks

References 00000 SORBONNE UNIVERSITÉ

Learning from streaming data

Figure 2: LHS: Constant streaming-batches, $\rho = 0$, $\beta = 0$. RHS: Varying streaming-batches, $C_{\rho} = 1$, $\beta = 0$.

Takeaway.

- Increasing mini-batch \Rightarrow variance reduction.
- Increasing streaming rates \Rightarrow increasing convergence rates (SSG).

Stochastic optimization

Convergence analysis

Some final remarks

References

Learning from streaming data

Figure 3: LHS: Varying streaming-batches, $C_{\rho} = 8$, $\beta = 0$. RHS: Varying streaming-batches, $C_{\rho} = 8$, $\beta = 1/3$.

Takeaway.

- Combining mini-batches with increasing streaming rates ⇒ variance reduction and better convergence rates.
- $\alpha = 2/3$ and $\beta = 1/3 \Rightarrow$ ASSG robustly decay $\forall \rho \in [0, 1)$.

Stochastic optimization

Convergence analysis

Some final remarks 000 References

Learning from time-dependent streaming data

Assume the following about l_t for each $t \in \mathbb{N}$. For some positive integer p, there exists positive sequences (ν_t) , (κ_t) , (σ_t) and $D_{\nu}, B_{\nu} \ge 0$,

 $= \mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] - \nabla_{\theta}L(\theta)\|^p] \le \nu_t^p(D_\nu^p\mathbb{E}[\|\theta - \theta^*\|^p] + B_\nu^p),$

Convergence analysis

Some final remarks 000 References

Learning from time-dependent streaming data

- $\mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] \nabla_{\theta}L(\theta)\|^p] \le \nu_t^p(D_\nu^p\mathbb{E}[\|\theta \theta^*\|^p] + B_\nu^p),$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta) \nabla_{\theta} l_t(\theta')\|^p] \le \kappa_t^p \mathbb{E}[\|\theta \theta'\|^p],$

- $\mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] \nabla_{\theta}L(\theta)\|^p] \le \nu_t^p(D_{\nu}^p\mathbb{E}[\|\theta \theta^*\|^p] + B_{\nu}^p),$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta) \nabla_{\theta} l_t(\theta')\|^p] \le \kappa_t^p \mathbb{E}[\|\theta \theta'\|^p],$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta^*)\|^p] \le \sigma_t^p, \, \forall \theta, \theta' \in \mathbb{R}^d.$

Stochastic optimization

Convergence analysis

Some final remarks 000 References

Learning from time-dependent streaming data

- $\mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] \nabla_{\theta}L(\theta)\|^p] \le \nu_t^p(D_{\nu}^p\mathbb{E}[\|\theta \theta^*\|^p] + B_{\nu}^p),$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta) \nabla_{\theta} l_t(\theta')\|^p] \le \kappa_t^p \mathbb{E}[\|\theta \theta'\|^p],$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta^*)\|^p] \le \sigma_t^p, \, \forall \theta, \theta' \in \mathbb{R}^d.$

•
$$\nu_t = n_t^{-\nu}$$
, $\kappa_t = C_{\kappa} n_t^{-\kappa}$ and $\sigma_t = C_{\sigma} n_t^{-\sigma}$ with $\nu \in (0, \infty)$, $\kappa, \sigma \in [0, 1/2]$, and $C_{\kappa}, C_{\sigma} > 0$.

- $\mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] \nabla_{\theta}L(\theta)\|^p] \le \nu_t^p(D_{\nu}^p\mathbb{E}[\|\theta \theta^*\|^p] + B_{\nu}^p),$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta) \nabla_{\theta} l_t(\theta')\|^p] \le \kappa_t^p \mathbb{E}[\|\theta \theta'\|^p],$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta^*)\|^p] \le \sigma_t^p, \, \forall \theta, \theta' \in \mathbb{R}^d.$
- $\nu_t = n_t^{-\nu}$, $\kappa_t = C_{\kappa} n_t^{-\kappa}$ and $\sigma_t = C_{\sigma} n_t^{-\sigma}$ with $\nu \in (0, \infty)$, $\kappa, \sigma \in [0, 1/2]$, and $C_{\kappa}, C_{\sigma} > 0$.
- Long-range dependence is when $\nu \in (0, 1/2)$ and $\kappa, \sigma < 1/2$.

Assumption 2 ($D_{\nu}\nu_t$ -dependence, $B_{\nu}\nu_t$ -bias, κ_t -expected smoothness, σ_t -gradient noise)

- $\mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] \nabla_{\theta}L(\theta)\|^p] \le \nu_t^p(D_{\nu}^p\mathbb{E}[\|\theta \theta^*\|^p] + B_{\nu}^p),$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta) \nabla_{\theta} l_t(\theta')\|^p] \le \kappa_t^p \mathbb{E}[\|\theta \theta'\|^p],$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta^*)\|^p] \le \sigma_t^p, \, \forall \theta, \theta' \in \mathbb{R}^d.$
- $\nu_t = n_t^{-\nu}$, $\kappa_t = C_{\kappa} n_t^{-\kappa}$ and $\sigma_t = C_{\sigma} n_t^{-\sigma}$ with $\nu \in (0, \infty)$, $\kappa, \sigma \in [0, 1/2]$, and $C_{\kappa}, C_{\sigma} > 0$.
- Long-range dependence is when $\nu \in (0, 1/2)$ and $\kappa, \sigma < 1/2$.
- \blacksquare Short-range dependence is when $\nu \in [1/2,\infty)$ and $\kappa,\sigma=1/2$

- $\mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] \nabla_{\theta}L(\theta)\|^p] \le \nu_t^p(D_{\nu}^p\mathbb{E}[\|\theta \theta^*\|^p] + B_{\nu}^p),$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta) \nabla_{\theta} l_t(\theta')\|^p] \le \kappa_t^p \mathbb{E}[\|\theta \theta'\|^p],$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta^*)\|^p] \le \sigma_t^p, \, \forall \theta, \theta' \in \mathbb{R}^d.$
- $\nu_t = n_t^{-\nu}$, $\kappa_t = C_{\kappa} n_t^{-\kappa}$ and $\sigma_t = C_{\sigma} n_t^{-\sigma}$ with $\nu \in (0, \infty)$, $\kappa, \sigma \in [0, 1/2]$, and $C_{\kappa}, C_{\sigma} > 0$.
- Long-range dependence is when $\nu \in (0, 1/2)$ and $\kappa, \sigma < 1/2$.
- Short-range dependence is when $\nu \in [1/2,\infty)$ and $\kappa,\sigma=1/2$
- Independent unbiased case is when $\nu \to \infty$ and $\sigma = \kappa = 1/2$.

Stochastic optimization

Convergence analysis

Some final remarks 000 References

Learning from time-dependent streaming data

Assumption 2 ($D_{\nu}\nu_t$ -dependence, $B_{\nu}\nu_t$ -bias, κ_t -expected smoothness, σ_t -gradient noise)

Assume the following about l_t for each $t \in \mathbb{N}$. For some positive integer p, there exists positive sequences (ν_t) , (κ_t) , (σ_t) and $D_{\nu}, B_{\nu} \ge 0$,

- $\mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] \nabla_{\theta}L(\theta)\|^p] \le \nu_t^p(D_{\nu}^p\mathbb{E}[\|\theta \theta^*\|^p] + B_{\nu}^p),$
- $\blacksquare \mathbb{E}[\|\nabla_{\theta} l_t(\theta) \nabla_{\theta} l_t(\theta')\|^p] \le \kappa_t^p \mathbb{E}[\|\theta \theta'\|^p],$

 $\quad \blacksquare \ \mathbb{E}[\|\nabla_{\theta} l_t(\theta^*)\|^p] \leq \sigma_t^p, \ \forall \theta, \theta' \in \mathbb{R}^d.$

- $\nu_t = n_t^{-\nu}$, $\kappa_t = C_{\kappa} n_t^{-\kappa}$ and $\sigma_t = C_{\sigma} n_t^{-\sigma}$ with $\nu \in (0, \infty)$, $\kappa, \sigma \in [0, 1/2]$, and $C_{\kappa}, C_{\sigma} > 0$.
- Long-range dependence is when $\nu \in (0, 1/2)$ and $\kappa, \sigma < 1/2$.
- Short-range dependence is when $\nu \in [1/2,\infty)$ and $\kappa,\sigma=1/2$
- Independent unbiased case is when $\nu \to \infty$ and $\sigma = \kappa = 1/2$.

Takeaway. Assumption 2 allows dependent and biased gradients. For SSG, we need p = 2, whereas for ASSG, we need p = 4.

Stochastic optimization

Convergence analysis

Some final remarks 000 References

Learning from time-dependent streaming data

Theorem 5 (SSG)

Under Assumption 2 with p = 2 and $\mu_{\nu} = \mu - \mathbb{1}_{\{\rho=0\}} 2D_{\nu}C_{\rho}^{-\nu} > 0$, there exists $C_{\delta}, C'_{\delta}, C''_{\delta} > 0$ such that for $\alpha - \rho\beta \in (1/2, 1)$:

$$\delta_{t} \leq \frac{C_{\delta}C_{\sigma}^{2}}{\mu_{\nu}C_{\rho}^{\frac{2\sigma-\beta-\alpha}{1+\rho}}N_{t}^{\frac{\rho(2\sigma-\beta)+\alpha}{1+\rho}}} + \frac{C_{\delta}'B_{\nu}^{2}}{\mu\mu_{\nu}C_{\rho}^{\frac{2\nu}{1+\rho}}N_{t}^{\frac{2\rho\nu}{1+\rho}}} + \pi_{t}, \qquad (12)$$
with $\pi_{t} = \mathcal{O}(\exp(-\mu C_{\delta}''N_{t}^{(1+\rho\beta-\alpha)/(1+\rho)}/C_{\rho}^{(1-\beta-\alpha)/(1+\rho)})).$

with

Stochastic optimization

Convergence analysis

Some final remarks 000 References

Learning from time-dependent streaming data

Theorem 5 (SSG)

Under Assumption 2 with p = 2 and $\mu_{\nu} = \mu - \mathbb{1}_{\{\rho=0\}} 2D_{\nu}C_{\rho}^{-\nu} > 0$, there exists $C_{\delta}, C'_{\delta}, C''_{\delta} > 0$ such that for $\alpha - \rho\beta \in (1/2, 1)$:

$$\delta_{t} \leq \frac{C_{\delta}C_{\sigma}^{2}}{\mu_{\nu}C_{\rho}^{\frac{2\sigma-\beta-\alpha}{1+\rho}}N_{t}^{\frac{\rho(2\sigma-\beta)+\alpha}{1+\rho}}} + \frac{C_{\delta}'B_{\nu}^{2}}{\mu\mu_{\nu}C_{\rho}^{\frac{2\nu}{1+\rho}}N_{t}^{\frac{2\rho\nu}{1+\rho}}} + \pi_{t}, \qquad (12)$$
$$\pi_{t} = \mathcal{O}(\exp(-\mu C_{\delta}''N_{t}^{(1+\rho\beta-\alpha)/(1+\rho)}/C_{\rho}^{(1-\beta-\alpha)/(1+\rho)})).$$

Taking $\alpha + \beta < 2\sigma \Rightarrow$ variance reduction for mini-batches $C_{\rho} > 1$.

- Increasing streaming rates $(\rho > 0) \Rightarrow$ accelerate convergence.
- **Bias** term B_{ν} is **independent** of the learning rate γ_t .
- **Positivity** of the dependence penalised **convexity constant** μ_{ν} is essential in all terms of (12) for attaining convergence.

Some final remarks 000 References

Learning from time-dependent streaming data

Theorem 5 (SSG)

Under Assumption 2 with p = 2 and $\mu_{\nu} = \mu - \mathbb{1}_{\{\rho=0\}} 2D_{\nu}C_{\rho}^{-\nu} > 0$, there exists $C_{\delta}, C'_{\delta}, C''_{\delta} > 0$ such that for $\alpha - \rho\beta \in (1/2, 1)$:

$$\delta_{t} \leq \frac{C_{\delta}C_{\sigma}^{2}}{\mu_{\nu}C_{\rho}^{\frac{2\sigma-\beta-\alpha}{1+\rho}}N_{t}^{\frac{\rho(2\sigma-\beta)+\alpha}{1+\rho}}} + \frac{C_{\delta}^{\prime}B_{\nu}^{2}}{\mu\mu_{\nu}C_{\rho}^{\frac{2\nu}{1+\rho}}N_{t}^{\frac{2\rho\nu}{1+\rho}}} + \pi_{t},$$
(12)

with $\pi_t = \mathcal{O}(\exp(-\mu C_{\delta}^{\prime\prime} N_t^{(1+\rho\beta-\alpha)/(1+\rho)}/C_{\rho}^{(1-\beta-\alpha)/(1+\rho)})).$

- Taking $\alpha + \beta < 2\sigma \Rightarrow$ variance reduction for mini-batches $C_{\rho} > 1$.
- Increasing streaming rates $(\rho > 0) \Rightarrow$ accelerate convergence.
- **Bias** term B_{ν} is **independent** of the learning rate γ_t .
- **Positivity** of the dependence penalised **convexity constant** μ_{ν} is essential in all terms of (12) for attaining convergence.

Takeaway. Taking $\rho > 0$ and C_{ρ} large enough to ensure that $\mu_{\nu} > 0 \Rightarrow$ convergence even under long-range dependence and biased gradients.

Acceleration by averaging. In continuation of Assumption 2 with $\sigma_t = C_{\sigma} n_t^{-\sigma}$ for $\sigma \in [0, 1/2]$, we make the following assumption:

Assumption 3 (Covariance of scores $(\nabla_{\theta} l_t(\theta^*))$)

There exists a non-negative self-adjoint operator Σ such that $\forall t \geq 1$,

 $n_t^{2\sigma} \mathbb{E}[\nabla_{\theta} l_t(\theta^*) \nabla_{\theta} l_t(\theta^*)^{\top}] \leq \Sigma + \Sigma_t,$

where Σ_t is a positive symmetric matrix with $Tr(\Sigma_t) = C'_{\sigma} n_t^{-2\sigma'}$ for $C'_{\sigma} \ge 0$ and $\sigma' \in (0, 1/2]$.

• Assumption 3 is verified with $\sigma = 1/2$ and $C'_{\sigma} = 0$ in the unbiased i.i.d. case [GBWW21], e.g., see Assumption 2.

Stochastic optimization

Convergence analysis

Some final remarks 000 References

Learning from time-dependent streaming data

Theorem 6 (ASSG, $\sigma = 1/2$)

Under Assumption 2 with p = 4, Assumption 3 and $\mu_{\nu} = \mu - \mathbb{1}_{\{\rho=0\}} 2D_{\nu}C_{\rho}^{-\nu} > 0$, we have for $\alpha - \rho\beta \in (1/2, 1)$:

$$\bar{\delta}_t^{1/2} \le \frac{\Lambda^{1/2}}{N_t^{1/2}} + \tilde{\mathcal{O}}\left(\max\left\{ N_t^{-\frac{2+\rho(1+\beta)-\alpha}{2(1+\rho)}}, N_t^{-\frac{\rho(1-\beta)+\alpha}{1+\rho}} \right\} \right) + \mathbb{1}_{\{B_\nu \neq 0\}} \Psi_t,$$

with
$$\Lambda = {\rm Tr}(\nabla^2_\theta L(\theta^*)^{-1}\Sigma\nabla^2_\theta L(\theta^*)^{-1})$$
 and

$$\Psi_t = \tilde{\mathcal{O}}\left(\max\left\{ N_t^{-\frac{\rho(1/2+\nu)}{2(1+\rho)}}, N_t^{-\frac{\rho(1-\beta+2\nu)+\alpha}{4(1+\rho)}}, N_t^{-\frac{\rho\nu}{1+\rho}} \right\} \right)$$

Takeaway.

- Streaming rates $\rho > 0$ or mini-batches $C_{\rho} > 1 \Rightarrow \mu_{\nu} > 0$.
- Cramer-Rao's bound is obtainable for $\sigma = 1/2$ under short-range dependence and biasedness $B_{\nu} \neq 0$.

Real-life time-dependent streaming data using geometric median

- Historical hourly weather data.³
- Dataset contains around five years (roughly 45000 data points) with dimension d = 36.
- Our geometric median is compared to the one calculated by the Weiszfeld's algorithm [WP09].

³The historical hourly weather dataset can be found on https:

//www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data.

Figure 4: LHS: Constant streaming-batches, $\rho = 0$, $\beta = 0$. RHS: Varying streaming-batches, $C_{\rho} = 1$, $\beta = 0$.

Takeaway.

- Large mini-batches C_{ρ} ensures convexity through $\mu_{\nu} > 0$.
- Increasing streaming-batches ($\rho > 0$) ensures convexity, $\mu_{\nu} > 0$.

Convergence analysis

Figure 5: LHS: Varying streaming-batches, $C_{\rho} = 64$, $\beta = 0$. RHS: Varying streaming-batches, $C_{\rho} = 64$, $\beta = 1/3$.

Takeaway.

- Large C_{ρ} and increasing $(\rho > 0)$ streaming-batches accelerate learning, ensure convexity and break dependence.
- Obtain a final error of only 10^{-5} with $C_{\rho} = 64$, $\rho > 0$, $\beta = 1/3$.

SOPRONNE

Some final remarks

Some conclusions:

- Examined the SO problem in a streaming framework using time-dependent and biased gradients.
- Theoretical results formed heuristics that links the level of dependency and convexity to the SO problem parameters.
- SG-based methods can break long- and short-term dependence by using increasing streaming-batches.

Some final remarks

Some perspectives:

- Adaptive stochastic streaming gradient methods.
- Non-strongly convex objectives.
- Higher order stochastic streaming gradient methods.
- Probabilistic bounds; for any $\delta \in (0, 1)$, with probability at least 1δ , we bound the sequences $\{ \| \theta_t \theta^* \| : t \in \mathbb{N} \}$ and $\{ \| L(\theta_t) L(\theta^*) \| : t \in \mathbb{N} \}.$

Thank you for your attention!

000	Stochastic optimization	Convergence analysis	Some final remarks	Reterence 00000
References I				
[BM13]	Francis Bach and stochastic approxi in neural informat	Eric Moulines. "Non-stron mation with convergence r ion processing systems 26	gly-convex smooth rate O (1/n)". In: Ad (2013).	vances
[BP11]	Gérard Biau and E Series''. In: <i>Inform</i> pp. 1664 –1674.	Benoît Patra. "Sequential (ation Theory, IEEE Transa	Quantile Prediction of actions on 57 (Apr. 20	f Time)11),
[BB07]	Léon Bottou and learning". In: Adva (2007).	Olivier Bousquet. "The tra ances in neural information	deoffs of large scale processing systems 2	20
[Bra05]	Richard C Bradley survey and some of pp. 107–144.	r. "Basic properties of stro open questions". In: <i>Proba</i>	ng mixing conditions. bility surveys 2 (2005	A),
[CCZ13]	Hervé Cardot, Peg estimation of the stochastic gradien	gy Cénac, and Pierre-And geometric median in Hilbe t algorithm". In: <i>Bernoulli</i>	ré Zitt. "Efficient and rt spaces with an ave 19.1 (2013), pp. 18-	l fast raged 43.
[Dou94]	Paul Doukhan. "N	lixing". In: <i>Mixing</i> . Springe	er, 1994, pp. 15–23.	
[Dou12]	Paul Doukhan. <i>M</i> Science & Busines	ixing: properties and exam ss Media, 2012.	<i>ples.</i> Vol. 85. Springe	r

F

References II	~
	SORBONNE UNIVERSITÉ
[DHS11] John Duchi, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and stochastic optimization.". In: <i>Journ</i> <i>machine learning research</i> 12.7 (2011).	al of
[FZ19] Christian Francq and Jean-Michel Zakoian. GARCH models: structu statistical inference and financial applications. John Wiley & Sons, 2	ire, 2019.
[FZH11] Christian Francq, Jean-Michel Zakoïan, and Lajos Horvath. "Merits Drawbacks of Variance Targeting in GARCH Models". In: Journal o Financial Econometrics 9 (Sept. 2011), pp. 619–656.	and f
[GP17] Sébastien Gadat and Fabien Panloup. "Optimal non-asymptotic bou of the Ruppert-Polyak averaging without strong convexity". In: <i>arXi</i> preprint arXiv:1709.03342 (2017).	ind V
[Ger08] Daniel Gervini. "Robust functional estimation using the median and spherical principal components". In: <i>Biometrika</i> 95.3 (2008), pp. 587–600.	
[GB16] Antoine Godichon-Baggioni. "Estimating the geometric median in Hilbert spaces with stochastic gradient algorithms: Lp and almost s rates of convergence". In: <i>Journal of Multivariate Analysis</i> 146 (201 pp. 209–222.	ure 6),

trod		Stochastic optimization	Convergence analysis	Some final remarks 000	References ●●●●●
lef	erences l	Ш			
	[GBWW21] Antoine Godichon "Non-Asymptotic Streaming Data".	-Baggioni, Nicklas Werge, Analysis of Stochastic App In: arXiv preprint arXiv:21	and Olivier Wintenb proximation Algorithm 09.07117 (2021).	erger. ns for
	[GBWW22	P.] Antoine Godichon "Learning from tin algorithms". In: an	-Baggioni, Nicklas Werge, ne-dependent streaming da Xiv preprint arXiv:2205.12	and Olivier Wintenb ata with online stoch 549 (2022).	erger. astic
	[Hal48]	JBS Haldane. "No <i>Biometrika</i> 35.3-4	te on the median of a mu (1948), pp. 414–417.	ltivariate distribution'	". In:
	[Has+09]	Trevor Hastie et a inference, and pre-	I. The elements of statistic diction. Vol. 2. Springer, 2	cal learning: data mir 009.	ning,
	[Kem87]	JHB Kemperman. In: Statistical data (Neuchâtel, 1987)	"The median of a finite m a analysis based on the L1- (1987), pp. 217–230.	neasure on a Banach -norm and related me	space". ethods
	[KY03]	H. J. Kushner and Algorithms and A	G. G. Yin. <i>Stochastic Ap</i> oplications. Springer-Verlag	proximation and Rec g, 2003.	ursive
	[MB11]	Eric Moulines and approximation algo information proces	Francis Bach. "Non-asym prithms for machine learnin ssing systems 24 (2011).	ptotic analysis of sto ng". In: <i>Advances in</i> .	chastic neural

R

troduct i	ion St	ochastic optimization	Convergence analysis	Some final remarks	References ●●●●●
Refer	ences IV	,			
٩]	Ves+18]	Yurii Nesterov et al . Springer, 2018.	Lectures on convex optim	<i>ization</i> . Vol. 137.	
[F	PJ92]	Boris T Polyak and A approximation by ave optimization 30.4 (19	natoli B Juditsky. "Accele raging". In: <i>SIAM journal</i> 92), pp. 838–855.	eration of stochastic on control and	c
[F	Rio17]	Emmanuel Rio. <i>Asym</i> processes. Vol. 80. Sp	nptotic theory of weakly d	ependent random	
[F	RM51]	Herbert Robbins and method". In: The ann	Sutton Monro. "A stochanals of mathematical statis	stic approximation stics (1951), pp. 400	0–407.
[F	Rup88]	David Ruppert. <i>Effici</i> <i>Robbins-Monro proce</i> Research and Industr	ent estimations from a slo ess. Tech. rep. Cornell Uni ial Engineering, 1988.	owly convergent versity Operations	
[S	bhe20]	Kevin Sheppard. <i>bash</i> June 2020. DOI: http	n <i>tage/arch:</i> Release 4.15 (ps://doi.org/10.5281/z	Version 4.15). Zeno zenodo.593254.	odo,
ר]	「eo+07]	Choon Hui Teo et al. risk minimization". In international conferen pp. 727–736.	"A scalable modular conv : Proceedings of the 13th ace on Knowledge discover	vex solver for regula ACM SIGKDD ry and data mining.	rized 2007,

Introduction 0000	Stochastic optimization	Convergence analysis 0000000000000000000	Some final remarks 000	References •••••
References `	V			
[WWB18]	Rachel Ward, Xiaox <i>convergence over n</i> arXiv: 1806.01811	ia Wu, and Leon Bottou onconvex landscapes, fro [stat.ML].	. AdaGrad stepsizes: . m any initialization. 2	<i>Sharp</i> 2018.
[WP09]	Endre Weiszfeld an the distances to n g <i>Research</i> 167.1 (20	d Frank Plastria. "On the given points is minimum" 09), pp. 7–41.	e point for which the s . In: <i>Annals of Opera</i>	sum of tions
[Wer19]	Nicklas Werge. "Ad https://git	aVoľ ". In: <i>GitHub reposit</i> hub.com/nhwerge/AdaVo	cory (2019). URL: pl.git}.	
[Wer21]	Nicklas Werge. "Pro independent regime Applications 184 (2	edicting risk-adjusted retr -switching model". In: <i>Ex</i> 021), p. 115576. ISSN: 0	urns using an asset «pert Systems with 0957-4174.	
[WW22]	Nicklas Werge and recursive volatility p 23 (2022), pp. 19–3	Olivier Wintenberger. "A prediction method". In: <i>E</i> 35.	daVol: An adaptive conometrics and Stat	istics
[Zin03]	Martin Zinkevich. " infinitesimal gradier conference on macl	Online convex programm nt ascent". In: <i>Proceeding</i> nine learning (icml-03). 2	ing and generalized gs of the 20th internat 003, pp. 928–936.	tional

Projected SSG and ASSG

Projected SSG (PSSG)

The PSSG is defined by the following recursion,

$$\theta_{t} = \mathcal{P}_{\Theta}\left(\theta_{t-1} - \frac{\gamma_{t}}{n_{t}}\sum_{i=1}^{n_{t}} \nabla_{\theta} l_{t,i}\left(\theta_{t-1}\right)\right), \quad \theta_{0} \in \Theta,$$
(13)

where Θ is a closed convex set in \mathbb{R}^d and \mathcal{P}_{Θ} denotes the Euclidean projection onto Θ , i.e., $\mathcal{P}_{\Theta}(\theta) = \arg \min_{\theta' \in \Theta} \|\theta - \theta'\|_2$.

Projected ASSG (PASSG)

The PASSG is derived for all $t \in \mathbb{N}$ by the recursion,

$$\bar{\theta}_t = \frac{1}{N_t} \sum_{i=0}^{t-1} n_{i+1} \theta_i, \ \bar{\theta}_0 = 0, \text{ with } (\theta_t) \text{ following (13)}, \qquad (14)$$

where $N_t = \sum_{i=1}^t n_i$ denotes the accumulated sum of observations.

00				
Appendix ○●	OCOCO	OCOCO	Experiments 00	Ada Vol 000000000000

Learning from streaming data – random streaming batches

Theorem (SSG)

Under Assumption 1 for p = 2, there exists explicit constants $C_{\delta}, C'_{\delta}, C''_{\delta} > 0$ such that for $\alpha - \beta \rho \in (1/2, 1)$:

$$\delta_t \le \frac{C_\delta \sigma^2}{\mu C_\rho^{1-\beta-\phi} N_t^\phi} + C_\delta' \exp\left(-\frac{\mu C_\delta'' N_t^{1-\phi}}{C_\rho^{1-\beta-\phi}}\right),$$

with $\phi = ((1 - \beta)\rho + \alpha)/(1 + \rho)$.

 \blacksquare Theorem 3 could be expanded to include random streaming batches where n_t is given such that

$$C_L t^{\rho_L} \le n_t \le C_H t^{\rho_H},$$

with $\rho_L, \rho_H \in (-1, 1)$ and $C_L, C_H \ge 1$. This yields the modified convergence rate

$$\phi' = ((1-\beta)\rho_L + \alpha)/(1+\rho_H).$$

Assumption 2 \approx $\alpha\text{-mixing}$ condition for weakly dependence sequences.

- Assumption 2 can be verified using moment inequalities for partial sums of strongly mixing sequences [Rio17]; short-term dependence.
- For any positive integer p, Assumption 2 can be upper bounded by

$$\mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] - \nabla_{\theta}L(\theta)\|^p] \le n_t^{-p}\mathbb{E}[\|S_t\|^p], \qquad (15)$$

using Jensen's inequality, where $S_t = \sum_{i=1}^{n_t} (\nabla_{\theta} l_{t,i}(\theta) - \nabla_{\theta} L(\theta))$ is a *d*-dimensional vector.

- Under sufficient conditions, $\mathbb{E}[||S_t||^p] = \mathcal{O}(n_t^{p/2})$, meaning, (15) is at most $\mathcal{O}(n_t^{-p/2})$, i.e., ν_t^p is $\mathcal{O}(n_t^{-p/2})$.
- Examples: linear, non-linear and Markovian time series [Bra05; Dou12].

Verifications of assumptions ○●○○○ Alternative versions of results

Experiment

AdaVol 00000000000

Verifying Assumption 2 for AR processes

Sequence of real-valued time-series (X_s) ; here s is short notation for indexing the sequence of observations,

 $(X_{N_t}, X_{N_t-1}, \dots, X_{N_t-n_t} \equiv X_{N_{t-1}}, X_{N_{t-1}-1}, \dots)$ with $N_t = \sum_{i=1}^t n_t$.

- Stationary AR(1) process $X_s = \theta X_{s-1} + \epsilon_s$ where $|\theta| < 1$ and (ϵ_s) is white noise with zero mean and variance σ_{ϵ}^2 .
- Assumption 2 is verified for p = 2 if (X_s) has bounded moments; this is fulfilled by the natural constraint that $|\theta^*| < 1$.
- One can show $\mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] \nabla_{\theta}L(\theta)\|^2]$ is less than

$$\frac{4(\theta-\theta^*)^2(1-(\theta^*)^{2n_t})^2\sigma_{\epsilon}^2}{(1-(\theta^*)^2)^4n_t^2}\left(\sigma_{\epsilon}^2+\frac{1}{1-(\theta^*)^2}\right),$$

- Thus, $D_{\nu} > 0$, $B_{\nu} = 0$, and ν_t is $\mathcal{O}(n_t^{-1})$.
- The remaining assumptions can be verified in the same way, κ_t and σ_t is $\mathcal{O}(n_t^{-1/2})$.
- Assumption 3 with $\Sigma = 4\sigma_{\epsilon}^4/(1-(\theta^*)^2)$ and $\Sigma_t = 0$.

- Assume that the underlying data generating process follows the MA(1)-process, $X_s = \epsilon_s + \phi^* \epsilon_{s-1}$, with $\phi^* \in \mathbb{R}$.
- One can show that $\theta = \phi^*/(1 + (\phi^*)^2)$, thus, for any $\phi^* \in \mathbb{R}$ then $\theta \in (-1/2, 1/2)$.
- This yields,

$$\mathbb{E}[\|\mathbb{E}[\nabla_{\theta}l_t(\theta)|\mathcal{F}_{t-1}] - \nabla_{\theta}L(\theta)\|^2] = \frac{4(\theta - \theta^*)^2}{n_t^2} f_{\phi^*}(\epsilon_{N_{t-1}}),$$

where $f_{\phi^*}(\epsilon_{N_{t-1}})$ is finite function depending on the moments of $(\epsilon_{N_{t-1}})$ and $\phi^*.$

- Hence, we have $D_{\nu} > 0$ and $B_{\nu} = 0$ with ν_t being $\mathcal{O}(n_t^{-1})$.
- Similarly, it can be verified that κ_t and σ_t are $\mathcal{O}(n_t^{-1/2})$ by use of the reparametrization trick

Verifying Assumption 2 for ARCH processes

A process (ϵ_s) is called an ${\sf ARCH}(1)$ process with parameters α_0 and α_1 if it satisfies

$$\begin{cases} \epsilon_s = \sigma_s z_s, \\ \sigma_s^2 = \alpha_0 + \alpha_1 \epsilon_{s-1}^2, \end{cases}$$
(16)

where $\alpha_0 > 0$ and $\alpha_1 \ge 0$ ensures the non-negativity of the conditional variance process (σ_s^2) , and the innovations (z_s) is white noise.

 Verification of Assumption 2 can be done using mixing conditions; Francq and Zakoian [FZ19, Theorem 3.5] showed that stationary ARCH processes are geometrically β-mixing, which implies α-mixing as well.

The process (X_s) is called an AR(1)-ARCH(1) process with parameters $\theta,\,\alpha_0$ and α_1 if it satisfies

$$\begin{cases} X_s = \theta X_{s-1} + \epsilon_s, \\ \epsilon_s = \sigma_s z_s, \\ \sigma_s^2 = \alpha_0 + \alpha_1 \epsilon_{s-1}^2. \end{cases}$$
(17)

where the innovations (z_s) is weak white noise.

- The statistical inference of this model is done using the squared loss for the AR-part and the QMLE for the ARCH part.
- Assumption 2 can be verified by Doukhan [Dou94, Proposition 6], which showed that ARMA-ARCH processes are β-mixing.

Classical setting with
$$n_t = 1$$
 (i.e., $\{C_{\rho} = 1, \rho = 0\}$).

Theorem (Moulines and Bach [MB11])

Under Assumption 1 with p = 2, there exists explicit constants $C_{\delta}, C'_{\delta}, C''_{\delta} > 0$ such that for $\alpha \in (1/2, 1)$:

$$\delta_t \le \frac{C_\delta \sigma^2}{\mu N_t^\alpha} + C_\delta' \exp\left(-\mu C_\delta'' N_t^{1-\alpha}\right).$$

Hence, for any desired error $\epsilon > 0$, we have after

$$t > \max\left\{ \left(\frac{C_{\delta}\sigma^2}{\mu\epsilon}\right)^{\frac{1}{\alpha}}, \left(\frac{1}{\mu C_{\delta}''}\log\left(\frac{C_{\delta}'}{\epsilon}\right)\right)^{\frac{1}{1-\alpha}} \right\}$$

iterations that $\delta_t < \epsilon$.

Streaming setting with
$$n_t = C_{\rho}$$
 (i.e., $\{C_{\rho} \in \mathbb{N}, \rho = 0\}$).

Theorem (SSG)

Under Assumption 1 for p = 2, there exists explicit constants $C_{\delta}, C'_{\delta}, C''_{\delta} > 0$ such that for $\alpha \in (1/2, 1)$:

$$\delta_t \le \frac{C_\delta \sigma^2}{\mu C_\rho^{1-\alpha-\beta} N_t^\alpha} + C_\delta' \exp\left(-\frac{\mu C_\delta'' N_t^{1-\alpha}}{C_\rho^{1-\alpha-\beta}}\right).$$

Hence, for any desired error $\epsilon > 0$, we have after

$$t > \max\left\{ \left(\frac{C_{\delta}\sigma^2}{\mu C_{\rho}^{1-\beta}\epsilon}\right)^{\frac{1}{\alpha}}, \left(\frac{1}{\mu C_{\delta}''C_{\rho}^{\beta}}\log\left(\frac{C_{\delta}'}{\epsilon}\right)\right)^{\frac{1}{1-\alpha}}\right\}$$

iterations that $\delta_t < \epsilon$.

Streaming setting with $n_t = C_{\rho}t^{\rho}$ (i.e., $\{C_{\rho} \in \mathbb{N}, \rho \in [0,1)\}$).

Theorem (SSG)

Under Assumption 1 for p = 2, there exists explicit constants $C_{\delta}, C'_{\delta}, C''_{\delta} > 0$ such that for $\alpha - \beta \rho \in (1/2, 1)$:

$$\delta_t \le \frac{C_\delta \sigma^2}{\mu C_\rho^{1-\beta-\phi} N_t^\phi} + C_\delta' \exp\left(-\frac{\mu C_\delta'' N_t^{1-\phi}}{C_\rho^{1-\beta-\phi}}\right),$$

with $\phi = ((1 - \beta)\rho + \alpha)/(1 + \rho)$.

Hence, for any desired error $\epsilon>0,$ we have after

$$t > \max\left\{ \left(\frac{C_{\delta}\sigma^2}{\mu C_{\rho}^{1-\beta}\epsilon}\right)^{\frac{1}{(1-\beta)\rho+\alpha}}, \left(\frac{1}{\mu C_{\delta}''C_{\rho}^{\beta}}\log\left(\frac{C_{\delta}'}{\epsilon}\right)\right)^{\frac{1}{1+\beta\rho-\alpha}}\right\}$$

iterations that $\delta_t < \epsilon$.

Streaming setting with $n_t = C_{\rho}t^{\rho}$ (i.e., $\{C_{\rho} \in \mathbb{N}, \rho \in [0,1)\}$).

Theorem (SSG)

wit

Under Assumption 2 with p = 2 and $\mu_{\nu} = \mu - \mathbb{1}_{\{\rho=0\}} 2D_{\nu}C_{\rho}^{-\nu} > 0$, there exists $C_{\delta}, C'_{\delta}, C''_{\delta}, C''_{\delta} > 0$ such that for $\alpha - \rho\beta \in (1/2, 1)$:

$$\delta_t \le \frac{C_{\delta}C_{\sigma}^2}{\mu_{\nu}C_{\rho}^{\frac{2\sigma-\beta-\alpha}{1+\rho}}N_t^{\frac{\rho(2\sigma-\beta)+\alpha}{1+\rho}}} + \frac{C_{\delta}'B_{\nu}^2}{\mu\mu_{\nu}C_{\rho}^{\frac{2\nu}{1+\rho}}N_t^{\frac{2\rho\nu}{1+\rho}}} + \pi_t,$$

$$h \ \pi_t = C_{\delta}''' \exp(-\mu C_{\delta}'' N_t^{(1+\rho\beta-\alpha)/(1+\rho)} / C_{\rho}^{(1-\beta-\alpha)/(1+\rho)}).$$

Hence, for any desired error $\epsilon>0,$ we have after

$$t > \max\left\{ \left(\frac{C_{\delta}C_{\sigma}^{2}}{\mu_{\nu}C_{\rho}^{2\sigma-\beta}\epsilon}\right)^{\frac{1}{(2\sigma-\beta)\rho+\alpha}}, \left(\frac{C_{\delta}'B_{\nu}^{2}}{\mu\mu_{\nu}C_{\rho}^{2\nu}\epsilon}\right)^{\frac{1}{2\rho\nu}}, \left(\frac{1}{\mu C_{\delta}''C_{\rho}^{\beta}}\log\left(\frac{C_{\delta}'''}{\epsilon}\right)\right)^{\frac{1}{1+\beta\rho-\alpha}}\right\}$$
 iterations that $\delta_{t} < \epsilon$.

Theorem (ASSG)

Under Assumption 2 with p = 4, Assumption 3 and $\mu_{\nu} = \mu - \mathbb{1}_{\{\rho=0\}} 2D_{\nu}C_{\rho}^{-\nu} > 0$, we have for $\alpha - \rho\beta \in (1/2, 1)$:

$$\bar{\delta}_{t}^{1/2} \leq \frac{\Lambda^{1/2}}{N_{t}^{1/2}} \mathbb{1}_{\{\sigma=1/2\}} + \mathcal{O}\left(N_{t}^{-\frac{1+2\rho\sigma}{2(1+\rho)}}\right) \mathbb{1}_{\{\sigma<1/2\}} + \mathcal{O}\left(N_{t}^{-\frac{1+2\rho(\sigma+\sigma')}{2(1+\rho)}}\right) + \tilde{\mathcal{O}}\left(\max\left\{N_{t}^{-\frac{2+\rho(2\sigma+\beta)-\alpha}{2(1+\rho)}}, N_{t}^{-\frac{\rho(2\sigma-\beta)+\alpha}{1+\rho}}\right\}\right) + \mathbb{1}_{\{B_{\nu}\neq0\}}\Psi_{t},$$

with $\Lambda = \operatorname{Tr}(\nabla^2_{\theta}L(\theta^*)^{-1}\Sigma\nabla^2_{\theta}L(\theta^*)^{-1})$ and

$$\Psi_t = \tilde{\mathcal{O}}\left(\max\left\{ N_t^{-\frac{\rho(\sigma+\nu)}{2(1+\rho)}}, N_t^{-\frac{1+\rho(\beta+\nu)-\alpha}{1+\rho}}, N_t^{-\frac{1+2\rho\nu}{2(1+\rho)}}, N_t^{-\frac{\delta/2+\rho\nu}{2(1+\rho)}}, N_t^{-\frac{2\rho\nu}{1+\rho}} \right\} \right),$$

where $\delta = \mathbb{1}_{\{B_{\nu}=0\}}(\rho(2\sigma-\beta)+\alpha) + \mathbb{1}_{\{B_{\nu}\neq0\}}\min\{\rho(2\sigma-\beta)+\alpha,2\rho\nu\}.$

Figure 6: LHS: AR(1)-process, $X_t = \theta X_{t-1} + \epsilon_t$ with noise from fractional Brownian motion and Student't dist. with df > 4. RHS: ARCH(1)-process, $\epsilon_t = \sigma_t z_t$, $\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2$, with Gaussian innovations z_t .

Takeaway. Large C_{ρ} and increasing $(\rho > 0)$ streaming-batches accelerate learning, ensure convexity and break dependence.

Figure 7: LHS: AR(1)-process with Gaussian noise. RHS:AR(1)-process with noise from fractional Brownian motion and Student't dist. with df > 4.

Takeaway. (1) SSG/ASSG could accelerate adaptive learning rates, e.g., AdaGrad and Adam. (2) Adaptive learning rates could ease the use of SSG/ASSG.

Appendix 00	Verifications of assumptions	Alternative versions of results	Experiments 00	AdaVol ●00000000000
AdaVol:	Objective			

The **aim** is to make a natural adaption of the classical Quasi-Maximum Likelihood (QML) procedure to a *streaming setting* (where observations arrive continuously).

AdaVol is a recursive QML estimation procedure for GARCH models relying on the principles from stochastic approximations.

AdaVol is beneficial in at least three ways:

- Estimation is faster and more memory-efficient with a cost of only $\mathcal{O}(d)$ computations per recursion (compared to $\mathcal{O}(ndk)$).
- Reducing numerical issues in convergence when QML is combined with the Variance Targeting Estimation (VTE) technique⁴.
- Adaption to time-varying parameters as AdaVol only treats new observations once.

⁴E.g., see Francq, Zakoïan, and Horvath [FZH11].

Let us recall the Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model:

• A process (X_t) is called a GARCH(p,q) process with parameter vector $\theta = (\omega, \alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_q)^T$ if it satisfies

$$\begin{cases} X_t = \sigma_t Z_t, \\ \sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i X_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2, \end{cases}$$
(18)

where ω , α_i , and β_j for $1 \le i \le p$ and $1 \le j \le q$ are non-negative parameters ensuring the non-negativity of the conditional variance process (σ_t^2) .

• The innovations (Z_t) is a sequence of i.i.d. random variables with $\mathbb{E}[Z_0] = 0$ and $\mathbb{E}[Z_0^2] = 1$.

$\overline{\mathsf{GARCH}(p,q)}$ Models combined with VTE

Combine GARCH in (18) with VTE:

- The VTE reparametrization is obtained by defining $\omega = \gamma^2 (1 \sum_{i=1}^p \alpha_i \sum_{j=1}^q \beta_j)$, where γ is the sample volatility.
- \blacksquare The volatility process of the $\mathsf{GARCH}(p,q)$ process in (18) can then be rewritten as

$$(\sigma_t^2 - \gamma^2) = \sum_{i=1}^p \alpha_i (X_{t-i}^2 - \gamma^2) + \sum_{j=1}^q \beta_j (\sigma_{t-j}^2 - \gamma^2).$$

- The remaining parameters $\theta = (\alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_q)^T \in \mathbb{R}^{p+q}_+$ is estimated by the QML method.
- Note that one does not need VTE.

QML of GARCH(p,q) Models combined with VTE

Quasi likelihood loss is given by $\hat{l}_t(\theta) = 2^{-1} (X_t^2 / \hat{\sigma}_t^2(\theta) + \log \hat{\sigma}_t^2(\theta))$ with first derivative

$$\nabla \hat{l}_t(\theta) = \nabla \hat{\sigma}_t^2(\theta) \left(\frac{\hat{\sigma}_t^2(\theta) - X_t^2}{2\hat{\sigma}_t^4(\theta)} \right),$$

where
$$\nabla \widehat{\sigma}_t^2(\theta) = \vartheta_t(\theta) + \sum_{j=1}^q \beta_j \nabla \widehat{\sigma}_{t-j}^2(\theta)$$
 with $\vartheta_t(\theta) = (X_{t-1}^2 - \gamma^2, \dots, X_{t-p}^2 - \gamma^2, \widehat{\sigma}_{t-1}^2(\theta) - \gamma^2, \dots, \widehat{\sigma}_{t-q}^2(\theta) - \gamma^2)^T \in \mathbb{R}^{p+q}.$

Parameter space:

$$\mathcal{K} = \left\{ (\alpha_1, \cdots, \alpha_p, \beta_1, \dots, \beta_q) \in \mathbb{R}^{p+q}_+ \left| \sum_{i=1}^p \alpha_i + \sum_{j=1}^q \beta_j < 1 \right\}.$$

• Our recursive QML method relies on stochastic approximations⁵.

The recursive method is given by

$$\hat{\theta}_t = \hat{\theta}_{t-1} - \eta_{t-1} \nabla_{\theta} \hat{l}_t (\hat{\theta}_{t-1}),$$

where the *learning sequence* (η_t) is a decreasing sequence of positive numbers satisfying $\sum_{i=1}^t \eta_i = \infty$ and $\sum_{i=1}^t \eta_i^2 < \infty$ as $t \to \infty$.

⁵Robbins and Monro [RM51]
⁶Duchi, Hazan, and Singer [DHS11]
⁷Ward, Wu, and Bottou [WWB18]
⁸Zinkevich [Zin03]

- Our recursive QML method relies on stochastic approximations⁵.
- Adaptive learning with AdaGrad⁶, which has shown promising results in non-convex optimization⁷.

The recursive method is given by

$$\hat{\theta}_t = \hat{\theta}_{t-1} - \frac{\eta}{\sqrt{\sum_{i=1}^t \nabla_{\theta} \hat{l}_i (\hat{\theta}_{i-1})^2 + \epsilon}} \nabla_{\theta} \hat{l}_t (\hat{\theta}_{t-1}),$$

where $\eta, \epsilon > 0$.

⁵Robbins and Monro [RM51]
 ⁶Duchi, Hazan, and Singer [DHS11]
 ⁷Ward, Wu, and Bottou [WWB18]
 ⁸Zinkevich [Zin03]

- Our recursive QML method relies on stochastic approximations⁵.
- Adaptive learning with AdaGrad⁶, which has shown promising results in non-convex optimization⁷.
- Project $\hat{\theta}_t$ onto \mathcal{K} , preventing large jumps and enforcing convergence⁸.

Our recursive method is given by

$$\hat{\theta}_t = \mathsf{Projection}_{\mathcal{K}} \left[\hat{\theta}_{t-1} - \frac{\eta}{\sqrt{\sum_{i=1}^t \nabla_{\theta} \hat{l}_i (\hat{\theta}_{i-1})^2 + \epsilon}} \nabla_{\theta} \hat{l}_t (\hat{\theta}_{t-1}) \right],$$

where $\eta, \epsilon > 0$ with parameter space $\mathcal{K} = \{(\alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_q) \in \mathbb{R}^{p+q}_+ | \sum_{i=1}^p \alpha_i + \sum_{j=1}^q \beta_j < 1\}.$

⁵Robbins and Monro [RM51]
 ⁶Duchi, Hazan, and Singer [DHS11]
 ⁷Ward, Wu, and Bottou [WWB18]
 ⁸Zinkevich [Zin03]

Real-life observations:

- Consider daily log-returns (r_t) of stock market indices.
- \blacksquare $\mathsf{GARCH}(1,1)$ model with initial value
 - $\hat{\theta}_0 = \tilde{\theta}_0 = (5 \cdot 10^{-5}, 0.05, 0.9)^T.$

Stock Market Index	Period	
Standard & Poor's 500	(S&P500)	Jan. 1950 - Sep. 2020

Table 1: The observations consist of daily log-returns which are defined as log differences of the closing prices of the index between two consecutive days.

Iterative QMLE $\tilde{\theta}_n$:

- Estimated at every two thousand incremental using all observations up to this point, i.e., $(\tilde{\theta}_t)_{(k-2000)+1 \le t \le k}$ is estimated using $(X_t)_{1 \le t \le k}$ for $k = 2000, 4000, \ldots, n$ (i.e., forward-looking with at most 2000 observations).
- We use the (bounded) *L*-*BFGS* algorithm to solve for $\tilde{\theta}_n$.

Figure 8: Left: Trajectory of QML estimates. Right: Log-returns r_t with confidence intervals in three different periods.

Applications - Accuracy Score

- Measure the accuracy by studying the conditional quantiles using the predicted volatility processes⁹.
- Under the assumption of standard Gaussian innovations, X_t is Gaussian with zero mean and variance σ_t^2 .
- For any $\alpha \in (0, 1)$, the α -quantile of a Gaussian distribution $\mathcal{N}(0, \sigma_t^2)$ is $\sigma_t \Phi^{-1}(\alpha)$ ($\Phi^{-1}(\alpha)$ is the α -quantile of the standard Gaussian one).
- \blacksquare The $\alpha\mbox{-quantile}$ loss function is defined as

 $\rho_{\alpha}(X_t, \sigma_t) = \begin{cases} \alpha \left(X_t - \Phi^{-1}(\alpha) \sigma_t \right), & \text{for } X_t > \Phi^{-1}(\alpha) \sigma_t, \\ \left(1 - \alpha \right) \left(\Phi^{-1}(\alpha) \sigma_t - X_t \right), & \text{for } X_t \le \Phi^{-1}(\alpha) \sigma_t, \end{cases}$

with tilting parameter $\alpha \in (0, 1)$.

⁹Biau and Patra [BP11]

Applications - Accuracy Score

• We evaluate across the α -quantile scores ρ_{α} of (σ_t) by the (normalized) cumulative α -quantile scoring function QS_{α} :

$$QS_{\alpha}(X_n, \sigma_n) = \frac{1}{n} \sum_{t=1}^n \sum_{m=1}^M \rho_{\alpha_m}(X_t, \sigma_t),$$

with M as the number of quantiles $\alpha = \{\alpha_1, \ldots, \alpha_M\}.$

• The lowest QS_{α} score indicates the **best** ability of volatility forecast.

Figure 9: Boxplot of QS_{α} scores for $\alpha = \{0.01, 0.02, \dots, 0.99\}$, using the GARCH(1, 1) model on the log-returns r_t of S&P500 Index with random initial value in \mathcal{K} .

Iterative

0

Recursive

0.245

0.240

Appendix	Verifications of assumptions	Alternative versions of results	Experiments 00	AdaVol 0000000000●
Summarv				

- AdaVol; an adaptive approach to recursively estimate GARCH model parameters in a streaming setting using the VTE technique.
- AdaVol's design showed to produce robust and adaptive estimates.
- Time-varying parameters was an advantage for real-life observations.
- AdaVol is computationally efficient.

Model	n	AdaVol	arch
GARCH(1,1)	1000	1.00	204.89
	2000	1.00	233.86
GARCH(2,2)	1000	1.00	322.33
	2000	1.00	328.50

Table 2: Relative speed comparison between AdaVol implementation in Python [Wer19] and arch version 4.15 [She20]. A value of 1.00 means the method is the fastest. A value of 204.89 means the estimation time of the method is 204.89 times larger than the fastest.