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Learning schemes

Figure 1: Large- and small-scale learning vs. learning from streaming data

Examples of streaming data. Internet traffic (e.g., tweets, search
engines, advertising), self-driving cars, financial investments, electricity
management from solar or wind, weather data and other sensor data.
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Why use SG-based methods for streaming data?

Common optimization problem,

min
θ∈Rd

{
Ln(θ) =

1

n

n∑
t=1

lt(θ)

}
, (empirical risk) (1)

where (lt) is a sequence of random differentiable functions from Rd to R.
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Why use SG-based methods for streaming data?

Common optimization problem,

min
θ∈Rd

{
Ln(θ) =

1

n

n∑
t=1

lt(θ)

}
, (empirical risk) (1)

where (lt) is a sequence of random differentiable functions from Rd to R.
What is the computational cost of
solving (1)?

Batch gradient descent costs
O(ndk) with k iterations.
Stochastic Gradient (SG)
descent costs O(nd).a

aBB07.

Learning from time-dependent streaming data with online stochastic algorithms – Nicklas Werge 2/34



Introduction Stochastic optimization Convergence analysis Some final remarks References

Why use SG-based methods for streaming data?

Common optimization problem,

min
θ∈Rd

{
Ln(θ) =

1

n

n∑
t=1

lt(θ)

}
, (empirical risk) (1)

where (lt) is a sequence of random differentiable functions from Rd to R.
What is the computational cost of
updating (1)?

Batch gradient descent costs
O(ndk) with k iterations.
Stochastic Gradient (SG)
descent costs O(d).
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Why use SG-based methods for streaming data?

Common optimization problem,

min
θ∈Rd

{
Ln(θ) =

1

n

n∑
t=1

lt(θ)

}
, (empirical risk) (1)

where (lt) is a sequence of random differentiable functions from Rd to R.
What is the computational cost of
updating (1)?

Batch gradient descent costs
O(ndk) with k iterations.
Stochastic Gradient (SG)
descent costs O(d).

Takeaway. For streaming with large n (and d) ⇒ SG-based methods.
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Examples of applications for (1)

Let Xt ∈ X (inputs) and Yt ∈ Y (outputs/labels),

lt(θ) = l(Yt, hθ(Xt)) + λΩ(θ), λ ≥ 0, (2)

where hθ(Xt) : X → R (predictor), l : Y × R→ R (loss) and
Ω(θ) : Rd → R (regularizer).
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Examples of applications for (1)

Let Xt ∈ X (inputs) and Yt ∈ Y (outputs/labels),

lt(θ) = l(Yt, hθ(Xt)) + λΩ(θ), λ ≥ 0, (2)

where hθ(Xt) : X → R (predictor), l : Y × R→ R (loss) and
Ω(θ) : Rd → R (regularizer).

Typical examples:

Regression: Y = R, hθ(Xt) = ⟨θ,Xt⟩, l = 1
2 (Yt − hθ(Xt))

2,
Ω(θ) = ∥θ∥1 or Ω(θ) = ∥θ∥22.
Classification: Y = {−1, 1}, hθ(Xt) = ⟨θ,Xt⟩, l = ϕ(Ythθ(Xt)),
where ϕ, e.g., is max{0, 1− u} or log(1 + e−u).
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Examples of applications for (1)

Let Xt ∈ X (inputs) and Yt ∈ Y (outputs/labels),

lt(θ) = l(Yt, hθ(Xt)) + λΩ(θ), λ ≥ 0, (2)

where hθ(Xt) : X → R (predictor), l : Y × R→ R (loss) and
Ω(θ) : Rd → R (regularizer).

Other examples:

Geometric median (our example in this talk).
Quasi-maximum likelihood for non-linear time series models.
Neural networks for deep learning.
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Examples of applications for (1)

Let Xt ∈ X (inputs) and Yt ∈ Y (outputs/labels),

lt(θ) = l(Yt, hθ(Xt)) + λΩ(θ), λ ≥ 0, (2)

where hθ(Xt) : X → R (predictor), l : Y × R→ R (loss) and
Ω(θ) : Rd → R (regularizer).

Other examples:

Geometric median (our example in this talk).
Quasi-maximum likelihood for non-linear time series models.
Neural networks for deep learning.

Takeaway. There are many examples for applications, e.g., see Teo et al.
[Teo+07], Hastie et al. [Has+09], Kushner and Yin [KY03], and Nesterov
et al. [Nes+18] for examples of losses and their derivatives.
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Research aims and objectives

Main goals. The central theme of this thesis is to learn from
time-dependent streaming data, where traditional optimization
techniques are unsustainable due to their high computational cost.
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Research aims and objectives

Main goals. The central theme of this thesis is to learn from
time-dependent streaming data, where traditional optimization
techniques are unsustainable due to their high computational cost.

We want to explore the robustness and convergence guarantees of
SG-based methods under various settings. In short, the main goals are

1 to allow learning algorithms to handle streaming data and
2 to improve learning by adapting streaming learning to the difficulty

of the problem; the level of dependence, noise, and convexity.
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Research aims and objectives

Main goals. The central theme of this thesis is to learn from
time-dependent streaming data, where traditional optimization
techniques are unsustainable due to their high computational cost.

Summary of Ph.D.:

Chapter 2 [GBWW21]: Antoine Godichon-Baggioni, Nicklas Werge, and
Olivier Wintenberger. “Non-Asymptotic Analysis of Stochastic Approximation
Algorithms for Streaming Data”. In: arXiv preprint arXiv:2109.07117 (2021).

Chapter 3 [GBWW22]: Antoine Godichon-Baggioni, Nicklas Werge, and
Olivier Wintenberger. “Learning from time-dependent streaming data with online
stochastic algorithms”. In: arXiv preprint arXiv:2205.12549 (2022).

Chapter 4 [WW22]: Nicklas Werge and Olivier Wintenberger. “AdaVol: An
adaptive recursive volatility prediction method”. In: Econometrics and Statistics
23 (2022), pp. 19–35.

Appendix [Wer21]: Nicklas Werge. “Predicting risk-adjusted returns using an asset
independent regime-switching model”. In: Expert Systems with Applications 184
(2021), p. 115576. ISSN: 0957-4174.
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Research aims and objectives

Main goals. The central theme of this thesis is to learn from
time-dependent streaming data, where traditional optimization
techniques are unsustainable due to their high computational cost.

For this talk:

Chapter 2 [GBWW21]: Learning from streaming data.

Chapter 3 [GBWW22]: Learning from time-dependent streaming data.
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Stochastic optimization

Stochastic Optimization (SO) problem

Minimize objectives L : Rd → R, defined by

θ∗ := argmin
θ∈Rd

{L(θ) := E[lt(θ)]}, (3)

with lt : Rd → R some random differentiable functions.
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Stochastic optimization

Stochastic Optimization (SO) problem

Minimize objectives L : Rd → R, defined by

θ∗ := argmin
θ∈Rd

{L(θ) := E[lt(θ)]}, (3)

with lt : Rd → R some random differentiable functions.

How do we find the unique global minimizer θ∗ of L in (3)?1

L is minimized without evaluating it directly.
Instead, we only use noisy gradients of lt(θ) as estimates.

1Robbins and Monro [RM51]
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Stochastic optimization

Stochastic Optimization (SO) problem

Minimize objectives L : Rd → R, defined by

θ∗ := argmin
θ∈Rd

{L(θ) := E[lt(θ)]}, (3)

with lt : Rd → R some random differentiable functions.

How to extend the SO problem to a streaming setting
At each time t ∈ N, a block of nt ∈ N random differentiable functions
arrive,

lt := (lt,1, . . . , lt,nt
).
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Some examples for streaming applications

Following (1) and (2), for some parameterization {hθ}θ∈Rd , this requires
to minimize

LNt(θ) =
1

Nt

t∑
i=1

li(θ), (empirical risk)

where Nt :=
∑t

i=1 ni denotes the accumulated sum of observations; here

lt(θ) =

nt∑
j=1

l(Yt,j , hθ(Xt,j)) + λΩ(θ),

where Xt := (Xt,1, . . . , Xt,nt
) and Yt := (Yt,1, . . . , Yt,nt

) are the blocks
of nt observations that arrive at each t (a.k.a. streaming-batches).
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How to we solve the SO problem in a streaming setting?

Stochastic Streaming Gradient (SSG)

The SSG is defined by the following recursion,

θt = θt−1 −
γt
nt

nt∑
i=1

∇θlt,i (θt−1) , θ0 ∈ Rd, (4)

with learning rate (γt) satisfying
∑∞

i=1 γi =∞ and
∑∞

i=1 γ
2
i <∞.

nt = 1 ⇒ SG descent (SGD) [RM51].
nt constant ⇒ online mini-batches.
nt time-varying ⇒ streaming-batches.
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Acceleration by averaging

Averaged SSG (ASSG)

The ASSG is derived for all t ∈ N by the recursion,

θ̄t =
1

Nt

t−1∑
i=0

ni+1θi, θ̄0 = 0, with (θt) following (4), (5)

where Nt =
∑t

i=1 ni denotes the accumulated sum of observations.

nt = 1 ⇒ Polyak-Ruppert averaging SGD (ASGD) [PJ92; Rup88].
nt constant ⇒ online Polyak-Ruppert averaged mini-batches.
nt time-varying ⇒ Polyak-Ruppert averaged streaming-batches.
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Acceleration by averaging

Averaged SSG (ASSG)

The ASSG is derived for all t ∈ N by the recursion,

θ̄t =
1

Nt

t−1∑
i=0

ni+1θi, θ̄0 = 0, with (θt) following (4), (5)

where Nt =
∑t

i=1 ni denotes the accumulated sum of observations.

Stochastic streaming algorithms combines SG-based methods’

1 applicability,
2 computational benefits,
3 variance-reducing properties through mini-batching, and
4 the accelerated convergence from Polyak-Ruppert averaging.
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Overview of stochastic streaming algorithms (pseudo code)

Algorithm 1: Stochastic streaming algorithms (SSG/ASSG)

Inputs : θ0 ∈ Rd, average: True or False
Outputs: θt, θ̄t (resulting estimates)
θ̄0 = 0
for each t ≥ 1, a block of nt data arrives do

θt ← θt−1 − γt

nt

∑nt

i=1∇θlt,i (θt−1)

if average then
θ̄t ← (Nt−1/Nt)θ̄t−1 + (nt/Nt)θt−1 /* average */

Takeaway. Each update is cheap with a computational costs of O(ntd).
A batch gradient costs O(Ntdk) after k iterations.
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Overview of stochastic streaming algorithms (pseudo code)

Algorithm 2: Stochastic streaming algorithms (SSG/ASSG)

Inputs : θ0 ∈ Rd, average: True or False
Outputs: θt, θ̄t (resulting estimates)
θ̄0 = 0
for each t ≥ 1, a block of nt data arrives do

θt ← θt−1 − γt

nt

∑nt

i=1∇θlt,i (θt−1)

if average then
θ̄t ← (Nt−1/Nt)θ̄t−1 + (nt/Nt)θt−1 /* average */

Takeaway. Each update is cheap with a computational costs of O(ntd).
A batch gradient costs O(Ntdk) after k iterations.

Projected stochastic streaming algorithms → [GBWW21; GBWW22].
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What is our goals? How do we evaluate?

Our objective is to provide non-asymptotic bounds of

δt = E[∥θt − θ∗∥2] and δ̄t = E[∥θ̄t − θ∗∥2].
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What is our goals? How do we evaluate?

Our objective is to provide non-asymptotic bounds of

δt = E[∥θt − θ∗∥2] and δ̄t = E[∥θ̄t − θ∗∥2].

Learning rates (γt) on the form:

γt = Cγn
β
t t

−α,

with Cγ > 0, β ∈ [0, 1) and α chosen accordingly to the
streaming-batches.
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What is our goals? How do we evaluate?

Our objective is to provide non-asymptotic bounds of

δt = E[∥θt − θ∗∥2] and δ̄t = E[∥θ̄t − θ∗∥2].

Learning rates (γt) and streaming-batches (nt) on the form:

γt = Cγn
β
t t

−α and nt = Cρt
ρ,

with Cγ > 0, Cρ ∈ N, β, ρ ∈ [0, 1) and α chosen accordingly to the
streaming-batches.

Classical SG-based methods: nt = 1, i.e., {Cρ = 1, ρ = 0}.
Constant streaming-batches (online mini-batch): nt = Cρ, i.e.,
{Cρ ∈ N, ρ = 0}, with streaming-batch size Cρ.
Time-varying streaming-batches: nt = Cρt

ρ with Cρ ∈ N and
streaming rate ρ ∈ [0, 1).1

1Note that [GBWW21] considered ρ ∈ (−1, 1).
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What is our goals? How do we evaluate?

Our objective is to provide non-asymptotic bounds of

δt = E[∥θt − θ∗∥2] and δ̄t = E[∥θ̄t − θ∗∥2].

Learning rates (γt) and streaming-batches (nt) on the form:

γt = Cγn
β
t t

−α and nt = Cρt
ρ,

with Cγ > 0, Cρ ∈ N, β, ρ ∈ [0, 1) and α chosen accordingly to the
streaming-batches.

What has been done until now?

Classical setting with nt = 1 (i.e., {Cρ = 1, ρ = 0}) using
independent unbiased gradients [MB11].
Streaming setting using independent unbiased gradients
[GBWW21].
Streaming setting using dependent biased gradients [GBWW22].
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Convexity and smoothness of the objectives

Assumption (Convexity and smoothness of the objectives)

Assume the following about the objectives L : Rd → R:
L has unique global minimizer θ∗ ∈ Rd such that ∇θL(θ

∗) = 0.

L is µ-quasi-strongly convex;

∃µ > 0, ∀θ ∈ Rd, L(θ∗) ≥ L(θ) + ⟨∇θL(θ), θ
∗ − θ⟩+ µ

2
∥θ∗ − θ∥2.

L has C∇-Lipschitz continuous gradients;

∃C∇ > 0, ∀θ, θ′ ∈ Rd, ∥∇θL(θ)−∇θL(θ
′)∥ ≤ C∇∥θ − θ′∥. (6)

The Hessian of L is C′
∇-Lipschitz-continuous;

∃C′
∇ > 0, ∀θ, θ′ ∈ Rd, ∥∇2

θL(θ)−∇2
θL(θ

′)∥ ≤ C′
∇∥θ − θ′∥. (7)
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Convexity and smoothness of the objectives

Assumption (Convexity and smoothness of the objectives)

Assume the following about the objectives L : Rd → R:
L has unique global minimizer θ∗ ∈ Rd such that ∇θL(θ

∗) = 0.

L is µ-quasi-strongly convex;1

∃µ > 0, ∀θ ∈ Rd, L(θ∗) ≥ L(θ) + ⟨∇θL(θ), θ
∗ − θ⟩+ µ

2
∥θ∗ − θ∥2.

L has C∇-Lipschitz continuous gradients;

∃C∇ > 0, ∀θ, θ′ ∈ Rd, ∥∇θL(θ)−∇θL(θ
′)∥ ≤ C∇∥θ − θ′∥. (6)

The Hessian of L is C′
∇-Lipschitz-continuous;

∃C′
∇ > 0, ∀θ, θ′ ∈ Rd, ∥∇2

θL(θ)−∇2
θL(θ

′)∥ ≤ C′
∇∥θ − θ′∥. (7)

1E.g., see Bach and Moulines [BM13] and Gadat and Panloup [GP17] for
non-convex objectives.
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Convexity and smoothness of the objectives

Assumption (Convexity and smoothness of the objectives)

Assume the following about the objectives L : Rd → R:
L has unique global minimizer θ∗ ∈ Rd such that ∇θL(θ

∗) = 0.

L is µ-quasi-strongly convex;

∃µ > 0, ∀θ ∈ Rd, L(θ∗) ≥ L(θ) + ⟨∇θL(θ), θ
∗ − θ⟩+ µ

2
∥θ∗ − θ∥2.

L has C∇-Lipschitz continuous gradients;

∃C∇ > 0, ∀θ, θ′ ∈ Rd, ∥∇θL(θ)−∇θL(θ
′)∥ ≤ C∇∥θ − θ′∥. (6)

The Hessian of L is C′
∇-Lipschitz-continuous;

∃C′
∇ > 0, ∀θ, θ′ ∈ Rd, ∥∇2

θL(θ)−∇2
θL(θ

′)∥ ≤ C′
∇∥θ − θ′∥. (7)

Observe that the Lipschitz smoothness assumptions in (6) and (7) only
needs to hold for the averaged estimate θ̄t in (5).
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Learning from streaming data

Let (lt) be a sequence of independent differentiable random functions
possibly non-convex and their gradients unbiased estimates of ∇θL.1

Assumption 1 (unbiased gradients, κ-expected smoothness,
σ-gradient noise)

Assume the following about lt,i for each t ∈ N with i = 1, . . . , nt. For
some positive integer p, there exists κ, σ > 0 such that

E[∇θlt,i(θ)] = ∇θL(θ),

E[∥∇θlt,i(θ)−∇θlt,i(θ
′)∥p] ≤ κpE[∥θ − θ′∥p],

E[∥∇θlt,i(θ
∗)∥p] ≤ σp, ∀θ, θ′ ∈ Rd.

1E.g., see Nesterov et al. [Nes+18] for definitions and properties of such functions.
Learning from time-dependent streaming data with online stochastic algorithms – Nicklas Werge 12/34
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Let (lt) be a sequence of independent differentiable random functions
possibly non-convex and their gradients unbiased estimates of ∇θL.1

Assumption 1 (unbiased gradients, κ-expected smoothness,
σ-gradient noise)

Assume the following about lt,i for each t ∈ N with i = 1, . . . , nt. For
some positive integer p, there exists κ, σ > 0 such that
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Learning from streaming data

Let (lt) be a sequence of independent differentiable random functions
possibly non-convex and their gradients unbiased estimates of ∇θL.1

Assumption 1 (unbiased gradients, κ-expected smoothness,
σ-gradient noise)

Assume the following about lt,i for each t ∈ N with i = 1, . . . , nt. For
some positive integer p, there exists κ, σ > 0 such that

E[∇θlt,i(θ)] = ∇θL(θ),
E[∥∇θlt,i(θ)−∇θlt,i(θ

′)∥p] ≤ κpE[∥θ − θ′∥p],
E[∥∇θlt,i(θ

∗)∥p] ≤ σp, ∀θ, θ′ ∈ Rd.

Takeaway. For SSG, we need Assumption 1 with p = 2, whereas for
ASSG, we need p = 4.

1E.g., see Nesterov et al. [Nes+18] for definitions and properties of such functions.
Learning from time-dependent streaming data with online stochastic algorithms – Nicklas Werge 12/34
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Learning from streaming data

Classical setting with nt = 1 (i.e., {Cρ = 1, ρ = 0}).

Theorem 1 (Moulines and Bach [MB11])

Under Assumption 1 with p = 2, there exists explicit constants
Cδ, C

′
δ, C

′′
δ > 0 such that for α ∈ (1/2, 1):

δt ≤
Cδσ

2

µNα
t

+ C ′
δ exp(−µC ′′

δ N
1−α
t ). (8)

The bound in (8) can be divided into

a noise term Cδσ
2/µNα

t and
a sub-exponential term C ′

δ exp(−µC ′′
δ N

1−α
t ).

Takeaway. We should focus on reducing the noise term without
harming the natural decay of the sub-exponential term.

Learning from time-dependent streaming data with online stochastic algorithms – Nicklas Werge 13/34



Introduction Stochastic optimization Convergence analysis Some final remarks References

Learning from streaming data

Streaming setting with nt = Cρ (i.e., {Cρ ∈ N, ρ = 0}).

Theorem 2 (SSG)

Under Assumption 1 for p = 2, there exists explicit constants
Cδ, C

′
δ, C

′′
δ > 0 such that for α ∈ (1/2, 1):

δt ≤
Cδσ

2

µC1−α−β
ρ Nα

t

+ C ′
δ exp

(
−µC ′′

δ N
1−α
t

C1−α−β
ρ

)
. (9)

Takeaway.

The noise term in (9) is divided by C1−α−β
ρ , implying we achieve

variance reduction by taking α+ β < 1.
But this will not increase the convergence rate, which still is
determined by α ∈ (1/2, 1).
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Learning from streaming data

Streaming setting with nt = Cρt
ρ (i.e., {Cρ ∈ N, ρ ∈ [0, 1)}).

Theorem 3 (SSG)

Under Assumption 1 for p = 2, there exists explicit constants
Cδ, C

′
δ, C

′′
δ > 0 such that for α− βρ ∈ (1/2, 1):

δt ≤
Cδσ

2

µC1−β−ϕ
ρ Nϕ

t

+ C ′
δ exp

(
−µC ′′

δ N
1−ϕ
t

C1−β−ϕ
ρ

)
, (10)

with ϕ = ((1− β)ρ+ α)/(1 + ρ).

Takeaway.

The noise term is scaled by C1−β−ϕ
ρ , implying we should take

α+ β < 1 to obtain variance reduction.
Increasing streaming rates (i.e., ρ > 0) can accelerate
convergence, e.g., α = 2/3, β = 0, gives δt = O(N−(2/3+ρ)/(1+ρ)

t ).
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Learning from streaming data

Acceleration by averaging. Consider the averaging estimate (θ̄n) given
in (5) derived with use of (θt) from (4).

Assumption 2 (Covariance of scores (∇θlt,i(θ
∗)))

There exists a non-negative self-adjoint operator Σ such that
E[∇θlt,i(θ

∗)∇θlt,i(θ
∗)⊤] ⪯ Σ.
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Learning from streaming data

Theorem 4 (ASSG)

Under Assumption 1 for p = 4 and Assumption 2, we have for
α− βρ ∈ (1/2, 1):

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+O(max{N−1+ϕ/2
t , N−ϕ

t }), (11)

where Λ = Tr(∇2
θL(θ

∗)−1Σ∇2
θL(θ

∗)−1) and ϕ = ((1− β)ρ+α)/(1+ ρ).

Takeaway.

Λ/Nt achieves the desirable Cramer-Rao bound, obtaining the
optimal rate of δ̄t = O(N−1

t ).

O(max{N−1+ϕ/2
t , N−ϕ

t }) insinuate that ϕ = 2/3, e.g., by α = 2/3

and β = 1/3 ⇒ robustly achieve O(N−4/3
t ), ∀ρ ∈ [0, 1).
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Learning from streaming data

Geometric median2 is a generalization of the real median [Hal48],
defined by

θ∗ := argmin
θ∈Rd

{L(θ) := E[∥X − θ∥ − ∥X∥]},

with gradient ∇θL(θ) = E[∇θlt(θ)], ∇θlt(θ) = −(Xt − θ)/∥Xt − θ∥.

Experiments

Set d = 10 and fix Cγ =
√
10 and α = 2/3 [CCZ13].

(Xt) is standard Gaussian centered at
θ = (−4,−3, 2, 1, 0, 1, 2, 3, 4, 5)T ∈ R10.
Explore the errors for various data streams nt = Cρt

ρ with
Nt = 100000 observations.

2E.g., see Kemperman [Kem87], Gervini [Ger08], and Godichon-Baggioni [GB16].
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Learning from streaming data

Figure 2: LHS: Constant streaming-batches, ρ = 0, β = 0. RHS: Varying
streaming-batches, Cρ = 1, β = 0.

Takeaway.

Increasing mini-batch ⇒ variance reduction.
Increasing streaming rates ⇒ increasing convergence rates (SSG).
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Learning from streaming data

Figure 3: LHS: Varying streaming-batches, Cρ = 8, β = 0. RHS: Varying
streaming-batches, Cρ = 8, β = 1/3.

Takeaway.

Combining mini-batches with increasing streaming rates ⇒ variance
reduction and better convergence rates.
α = 2/3 and β = 1/3 ⇒ ASSG robustly decay ∀ρ ∈ [0, 1).
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Learning from time-dependent streaming data

Assumption 2 (Dννt-dependence, Bννt-bias, κt-expected
smoothness, σt-gradient noise)

Assume the following about lt for each t ∈ N. For some positive integer
p, there exists positive sequences (νt), (κt), (σt) and Dν , Bν ≥ 0,

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥p] ≤ νpt (D
p
νE[∥θ − θ∗∥p] +Bp

ν),

E[∥∇θlt(θ)−∇θlt(θ
′)∥p] ≤ κp

tE[∥θ − θ′∥p],
E[∥∇θlt(θ

∗)∥p] ≤ σp
t , ∀θ, θ′ ∈ Rd.

νt = n−ν
t , κt = Cκn

−κ
t and σt = Cσn

−σ
t with ν ∈ (0,∞),

κ, σ ∈ [0, 1/2], and Cκ, Cσ > 0.
Long-range dependence is when ν ∈ (0, 1/2) and κ, σ < 1/2.
Short-range dependence is when ν ∈ [1/2,∞) and κ, σ = 1/2

Independent unbiased case is when ν →∞ and σ = κ = 1/2.
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Learning from time-dependent streaming data

Assumption 2 (Dννt-dependence, Bννt-bias, κt-expected
smoothness, σt-gradient noise)

Assume the following about lt for each t ∈ N. For some positive integer
p, there exists positive sequences (νt), (κt), (σt) and Dν , Bν ≥ 0,

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥p] ≤ νpt (D
p
νE[∥θ − θ∗∥p] +Bp
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tE[∥θ − θ′∥p],
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t , ∀θ, θ′ ∈ Rd.
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−κ
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Long-range dependence is when ν ∈ (0, 1/2) and κ, σ < 1/2.
Short-range dependence is when ν ∈ [1/2,∞) and κ, σ = 1/2

Independent unbiased case is when ν →∞ and σ = κ = 1/2.

Takeaway. Assumption 2 allows dependent and biased gradients. For
SSG, we need p = 2, whereas for ASSG, we need p = 4.
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Learning from time-dependent streaming data

Theorem 5 (SSG)

Under Assumption 2 with p = 2 and µν = µ− 1{ρ=0}2DνC
−ν
ρ > 0,

there exists Cδ, C
′
δ, C

′′
δ > 0 such that for α− ρβ ∈ (1/2, 1):

δt ≤
CδC

2
σ

µνC
2σ−β−α

1+ρ
ρ N

ρ(2σ−β)+α
1+ρ

t

+
C ′

δB
2
ν

µµνC
2ν
1+ρ
ρ N

2ρν
1+ρ

t

+ πt, (12)

with πt = O(exp(−µC ′′
δ N

(1+ρβ−α)/(1+ρ)
t /C

(1−β−α)/(1+ρ)
ρ )).

Taking α+ β < 2σ ⇒ variance reduction for mini-batches Cρ > 1.
Increasing streaming rates (ρ > 0) ⇒ accelerate convergence.
Bias term Bν is independent of the learning rate γt.
Positivity of the dependence penalised convexity constant µν is
essential in all terms of (12) for attaining convergence.
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Learning from time-dependent streaming data
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Taking α+ β < 2σ ⇒ variance reduction for mini-batches Cρ > 1.
Increasing streaming rates (ρ > 0) ⇒ accelerate convergence.
Bias term Bν is independent of the learning rate γt.
Positivity of the dependence penalised convexity constant µν is
essential in all terms of (12) for attaining convergence.

Takeaway. Taking ρ > 0 and Cρ large enough to ensure that µν > 0 ⇒
convergence even under long-range dependence and biased gradients.
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Learning from time-dependent streaming data

Acceleration by averaging. In continuation of Assumption 2 with
σt = Cσn

−σ
t for σ ∈ [0, 1/2], we make the following assumption:

Assumption 3 (Covariance of scores (∇θlt(θ
∗)))

There exists a non-negative self-adjoint operator Σ such that ∀t ≥ 1,

n2σ
t E[∇θlt(θ

∗)∇θlt(θ
∗)⊤] ⪯ Σ+ Σt,

where Σt is a positive symmetric matrix with Tr(Σt) = C ′
σn

−2σ′

t for
C ′

σ ≥ 0 and σ′ ∈ (0, 1/2].

Assumption 3 is verified with σ = 1/2 and C ′
σ = 0 in the unbiased

i.i.d. case [GBWW21], e.g., see Assumption 2.
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Learning from time-dependent streaming data

Theorem 6 (ASSG, σ = 1/2)

Under Assumption 2 with p = 4, Assumption 3 and
µν = µ− 1{ρ=0}2DνC

−ν
ρ > 0, we have for α− ρβ ∈ (1/2, 1):

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+ Õ
(
max

{
N

− 2+ρ(1+β)−α
2(1+ρ)

t , N
− ρ(1−β)+α

1+ρ

t

})
+ 1{Bν ̸=0}Ψt,

with Λ = Tr(∇2
θL(θ

∗)−1Σ∇2
θL(θ

∗)−1) and

Ψt = Õ
(
max

{
N

− ρ(1/2+ν)
2(1+ρ)

t , N
− ρ(1−β+2ν)+α

4(1+ρ)

t , N
− ρν

1+ρ

t

})
.

Takeaway.

Streaming rates ρ > 0 or mini-batches Cρ > 1 ⇒ µν > 0.
Cramer-Rao’s bound is obtainable for σ = 1/2 under short-range
dependence and biasedness Bν ̸= 0.
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Learning from time-dependent streaming data

Real-life time-dependent streaming data using geometric median

Historical hourly weather data.3

Dataset contains around five years (roughly 45000 data points) with
dimension d = 36.
Our geometric median is compared to the one calculated by the
Weiszfeld’s algorithm [WP09].

3The historical hourly weather dataset can be found on https:
//www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data.
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Learning from time-dependent streaming data

Figure 4: LHS: Constant streaming-batches, ρ = 0, β = 0. RHS: Varying
streaming-batches, Cρ = 1, β = 0.

Takeaway.

Large mini-batches Cρ ensures convexity through µν > 0.
Increasing streaming-batches (ρ > 0) ensures convexity, µν > 0.
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Learning from time-dependent streaming data

Figure 5: LHS: Varying streaming-batches, Cρ = 64, β = 0. RHS: Varying
streaming-batches, Cρ = 64, β = 1/3.
Takeaway.

Large Cρ and increasing (ρ > 0) streaming-batches accelerate
learning, ensure convexity and break dependence.
Obtain a final error of only 10−5 with Cρ = 64, ρ > 0, β = 1/3.
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Some final remarks

Some conclusions:

Examined the SO problem in a streaming framework using
time-dependent and biased gradients.
Theoretical results formed heuristics that links the level of
dependency and convexity to the SO problem parameters.
SG-based methods can break long- and short-term dependence by
using increasing streaming-batches.
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Some final remarks

Some perspectives:

Adaptive stochastic streaming gradient methods.
Non-strongly convex objectives.
Higher order stochastic streaming gradient methods.
Probabilistic bounds; for any δ ∈ (0, 1), with probability at least
1− δ, we bound the sequences {∥θt − θ∗∥ : t ∈ N} and
{∥L(θt)− L(θ∗)∥ : t ∈ N}.
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Thank you for your attention!
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Appendix Verifications of assumptions Alternative versions of results Experiments AdaVol

Projected SSG and ASSG

Projected SSG (PSSG)

The PSSG is defined by the following recursion,

θt = PΘ

(
θt−1 −

γt
nt

nt∑
i=1

∇θlt,i (θt−1)

)
, θ0 ∈ Θ, (13)

where Θ is a closed convex set in Rd and PΘ denotes the Euclidean
projection onto Θ, i.e., PΘ(θ) = argminθ′∈Θ∥θ − θ′∥2.

Projected ASSG (PASSG)

The PASSG is derived for all t ∈ N by the recursion,

θ̄t =
1

Nt

t−1∑
i=0

ni+1θi, θ̄0 = 0, with (θt) following (13), (14)

where Nt =
∑t

i=1 ni denotes the accumulated sum of observations.
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Learning from streaming data – random streaming batches

Theorem (SSG)

Under Assumption 1 for p = 2, there exists explicit constants
Cδ, C

′
δ, C

′′
δ > 0 such that for α− βρ ∈ (1/2, 1):

δt ≤
Cδσ

2

µC1−β−ϕ
ρ Nϕ

t

+ C ′
δ exp

(
−µC ′′

δ N
1−ϕ
t

C1−β−ϕ
ρ

)
,

with ϕ = ((1− β)ρ+ α)/(1 + ρ).

Theorem 3 could be expanded to include random streaming batches
where nt is given such that

CLt
ρL ≤ nt ≤ CHtρH ,

with ρL, ρH ∈ (−1, 1) and CL, CH ≥ 1.
This yields the modified convergence rate

ϕ′ = ((1− β)ρL + α)/(1 + ρH).
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Verifying Assumption 2 using α-mixing conditions

Assumption 2 ≈ α-mixing condition for weakly dependence sequences.

Assumption 2 can be verified using moment inequalities for partial
sums of strongly mixing sequences [Rio17]; short-term dependence.
For any positive integer p, Assumption 2 can be upper bounded by

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥p] ≤ n−p
t E[∥St∥p], (15)

using Jensen’s inequality, where St =
∑nt

i=1(∇θlt,i(θ)−∇θL(θ)) is
a d-dimensional vector.
Under sufficient conditions, E[∥St∥p] = O(np/2

t ), meaning, (15) is at
most O(n−p/2

t ), i.e., νpt is O(n−p/2
t ).

Examples: linear, non-linear and Markovian time series [Bra05;
Dou12].
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Verifying Assumption 2 for AR processes

Sequence of real-valued time-series (Xs); here s is short notation for
indexing the sequence of observations,
(XNt , XNt−1, . . . , XNt−nt ≡ XNt−1 , XNt−1−1, . . . ) with Nt =

∑t
i=1 nt.

Stationary AR(1) process Xs = θXs−1 + ϵs where |θ| < 1 and (ϵs)
is white noise with zero mean and variance σ2

ϵ .
Assumption 2 is verified for p = 2 if (Xs) has bounded moments;
this is fulfilled by the natural constraint that |θ∗| < 1.
One can show E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥2] is less than

4(θ − θ∗)2(1− (θ∗)2nt)2σ2
ϵ

(1− (θ∗)2)4n2
t

(
σ2
ϵ +

1

1− (θ∗)2

)
,

Thus, Dν > 0, Bν = 0, and νt is O(n−1
t ).

The remaining assumptions can be verified in the same way, κt and
σt is O(n−1/2

t ).
Assumption 3 with Σ = 4σ4

ϵ /(1− (θ∗)2) and Σt = 0.
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Verifying Assumption 2 for MA processes

Assume that the underlying data generating process follows the
MA(1)-process, Xs = ϵs + ϕ∗ϵs−1, with ϕ∗ ∈ R.
One can show that θ = ϕ∗/(1 + (ϕ∗)2), thus, for any ϕ∗ ∈ R then
θ ∈ (−1/2, 1/2).
This yields,

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥2] =
4(θ − θ∗)2

n2
t

fϕ∗(ϵNt−1),

where fϕ∗(ϵNt−1
) is finite function depending on the moments of

(ϵNt−1
) and ϕ∗.

Hence, we have Dν > 0 and Bν = 0 with νt being O(n−1
t ).

Similarly, it can be verified that κt and σt are O(n−1/2
t ) by use of

the reparametrization trick
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Verifying Assumption 2 for ARCH processes

A process (ϵs) is called an ARCH(1) process with parameters α0 and α1

if it satisfies {
ϵs = σszs,

σ2
s = α0 + α1ϵ

2
s−1,

(16)

where α0 > 0 and α1 ≥ 0 ensures the non-negativity of the conditional
variance process (σ2

s), and the innovations (zs) is white noise.

Verification of Assumption 2 can be done using mixing conditions;
Francq and Zakoian [FZ19, Theorem 3.5] showed that stationary
ARCH processes are geometrically β-mixing, which implies α-mixing
as well.
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Verifying Assumption 2 for AR-ARCH processes

The process (Xs) is called an AR(1)-ARCH(1) process with parameters
θ, α0 and α1 if it satisfies

Xs = θXs−1 + ϵs,

ϵs = σszs,

σ2
s = α0 + α1ϵ

2
s−1.

(17)

where the innovations (zs) is weak white noise.

The statistical inference of this model is done using the squared loss
for the AR-part and the QMLE for the ARCH part.
Assumption 2 can be verified by Doukhan [Dou94, Proposition 6],
which showed that ARMA-ARCH processes are β-mixing.

Learning from time-dependent streaming data with online stochastic algorithms – Nicklas Werge 7/25



Appendix Verifications of assumptions Alternative versions of results Experiments AdaVol

Alternative version of Theorem 1

Classical setting with nt = 1 (i.e., {Cρ = 1, ρ = 0}).

Theorem (Moulines and Bach [MB11])

Under Assumption 1 with p = 2, there exists explicit constants
Cδ, C

′
δ, C

′′
δ > 0 such that for α ∈ (1/2, 1):

δt ≤
Cδσ

2

µNα
t

+ C ′
δ exp

(
−µC ′′

δ N
1−α
t

)
.

Hence, for any desired error ϵ > 0, we have after

t > max

{(
Cδσ

2

µϵ

) 1
α

,

(
1

µC ′′
δ

log

(
C ′

δ

ϵ

)) 1
1−α

}

iterations that δt < ϵ.
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Alternative version of Theorem 2

Streaming setting with nt = Cρ (i.e., {Cρ ∈ N, ρ = 0}).

Theorem (SSG)

Under Assumption 1 for p = 2, there exists explicit constants
Cδ, C

′
δ, C

′′
δ > 0 such that for α ∈ (1/2, 1):

δt ≤
Cδσ

2

µC1−α−β
ρ Nα

t

+ C ′
δ exp

(
−µC ′′

δ N
1−α
t

C1−α−β
ρ

)
.

Hence, for any desired error ϵ > 0, we have after

t > max


(

Cδσ
2

µC1−β
ρ ϵ

) 1
α

,

(
1

µC ′′
δ C

β
ρ

log

(
C ′

δ

ϵ

)) 1
1−α


iterations that δt < ϵ.

Learning from time-dependent streaming data with online stochastic algorithms – Nicklas Werge 9/25



Appendix Verifications of assumptions Alternative versions of results Experiments AdaVol

Alternative version of Theorem 3

Streaming setting with nt = Cρt
ρ (i.e., {Cρ ∈ N, ρ ∈ [0, 1)}).

Theorem (SSG)

Under Assumption 1 for p = 2, there exists explicit constants
Cδ, C

′
δ, C

′′
δ > 0 such that for α− βρ ∈ (1/2, 1):

δt ≤
Cδσ

2

µC1−β−ϕ
ρ Nϕ

t

+ C ′
δ exp

(
−µC ′′

δ N
1−ϕ
t

C1−β−ϕ
ρ

)
,

with ϕ = ((1− β)ρ+ α)/(1 + ρ).

Hence, for any desired error ϵ > 0, we have after

t > max


(

Cδσ
2

µC1−β
ρ ϵ

) 1
(1−β)ρ+α

,

(
1

µC ′′
δ C

β
ρ

log

(
C ′

δ

ϵ

)) 1
1+βρ−α


iterations that δt < ϵ.
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Alternative version of Theorem 5

Streaming setting with nt = Cρt
ρ (i.e., {Cρ ∈ N, ρ ∈ [0, 1)}).

Theorem (SSG)

Under Assumption 2 with p = 2 and µν = µ− 1{ρ=0}2DνC
−ν
ρ > 0,

there exists Cδ, C
′
δ, C

′′
δ , C

′′′
δ > 0 such that for α− ρβ ∈ (1/2, 1):

δt ≤
CδC

2
σ

µνC
2σ−β−α

1+ρ
ρ N

ρ(2σ−β)+α
1+ρ

t

+
C ′

δB
2
ν

µµνC
2ν
1+ρ
ρ N

2ρν
1+ρ

t

+ πt,

with πt = C ′′′
δ exp(−µC ′′

δ N
(1+ρβ−α)/(1+ρ)
t /C

(1−β−α)/(1+ρ)
ρ ).

Hence, for any desired error ϵ > 0, we have after

t > max


(

CδC
2
σ

µνC
2σ−β
ρ ϵ

) 1
(2σ−β)ρ+α

,

(
C′

δB
2
ν

µµνC2ν
ρ ϵ

) 1
2ρν

,

(
1

µC′′
δ C

β
ρ

log

(
C′′′

δ

ϵ

)) 1
1+βρ−α


iterations that δt < ϵ.
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Alternative version of Theorem 6

Theorem (ASSG)
Under Assumption 2 with p = 4, Assumption 3 and
µν = µ− 1{ρ=0}2DνC

−ν
ρ > 0, we have for α− ρβ ∈ (1/2, 1):

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

1{σ=1/2} +O
(
N

− 1+2ρσ
2(1+ρ)

t

)
1{σ<1/2} +O

(
N

− 1+2ρ(σ+σ′)
2(1+ρ)

t

)

+ Õ
(
max

{
N

− 2+ρ(2σ+β)−α
2(1+ρ)

t , N
− ρ(2σ−β)+α

1+ρ
t

})
+ 1{Bν ̸=0}Ψt,

with Λ = Tr(∇2
θL(θ

∗)−1Σ∇2
θL(θ

∗)−1) and

Ψt = Õ
(
max

{
N

− ρ(σ+ν)
2(1+ρ)

t , N
− 1+ρ(β+ν)−α

1+ρ
t , N

− 1+2ρν
2(1+ρ)

t , N
− δ/2+ρν

2(1+ρ)

t , N
− 2ρν

1+ρ
t

})
,

where δ = 1{Bν=0}(ρ(2σ − β) + α) + 1{Bν ̸=0} min{ρ(2σ − β) + α, 2ρν}.
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Learning from time-dependent streaming data

Figure 6: LHS: AR(1)-process, Xt = θXt−1 + ϵt with noise from fractional
Brownian motion and Student’t dist. with df > 4. RHS: ARCH(1)-process,
ϵt = σtzt, σ2

t = α0 + α1ϵ
2
t−1, with Gaussian innovations zt.

Takeaway. Large Cρ and increasing (ρ > 0) streaming-batches
accelerate learning, ensure convexity and break dependence.
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Learning from time-dependent streaming data

Figure 7: LHS: AR(1)-process with Gaussian noise. RHS:AR(1)-process with
noise from fractional Brownian motion and Student’t dist. with df > 4.

Takeaway. (1) SSG/ASSG could accelerate adaptive learning rates, e.g.,
AdaGrad and Adam. (2) Adaptive learning rates could ease the use of
SSG/ASSG.

Learning from time-dependent streaming data with online stochastic algorithms – Nicklas Werge 14/25



Appendix Verifications of assumptions Alternative versions of results Experiments AdaVol

AdaVol: Objective

The aim is to make a natural adaption of the classical Quasi-Maximum
Likelihood (QML) procedure to a streaming setting (where observations
arrive continuously).

AdaVol is a recursive QML estimation procedure for GARCH models
relying on the principles from stochastic approximations.

AdaVol is beneficial in at least three ways:

Estimation is faster and more memory-efficient with a cost of only
O(d) computations per recursion (compared to O(ndk)).
Reducing numerical issues in convergence when QML is combined
with the Variance Targeting Estimation (VTE) technique4.
Adaption to time-varying parameters as AdaVol only treats new
observations once.

4E.g., see Francq, Zakoïan, and Horvath [FZH11].
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GARCH(p, q) Models

Let us recall the Generalized AutoRegressive Conditional
Heteroskedasticity (GARCH) model:

A process (Xt) is called a GARCH(p, q) process with parameter
vector θ = (ω, α1, . . . , αp, β1, . . . , βq)

T if it satisfies{
Xt = σtZt,

σ2
t = ω +

∑p
i=1 αiX

2
t−i +

∑q
j=1 βjσ

2
t−j ,

(18)

where ω, αi, and βj for 1 ≤ i ≤ p and 1 ≤ j ≤ q are non-negative
parameters ensuring the non-negativity of the conditional variance
process (σ2

t ).
The innovations (Zt) is a sequence of i.i.d. random variables with
E[Z0] = 0 and E[Z2

0 ] = 1.
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GARCH(p, q) Models combined with VTE

Combine GARCH in (18) with VTE:

The VTE reparametrization is obtained by defining
ω = γ2(1−

∑p
i=1 αi −

∑q
j=1 βj), where γ is the sample volatility.

The volatility process of the GARCH(p, q) process in (18) can then
be rewritten as

(σ2
t − γ2) =

p∑
i=1

αi(X
2
t−i − γ2) +

q∑
j=1

βj(σ
2
t−j − γ2).

The remaining parameters θ = (α1, . . . , αp, β1, . . . , βq)
T ∈ Rp+q

+ is
estimated by the QML method.
Note that one does not need VTE.
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QML of GARCH(p, q) Models combined with VTE

Quasi likelihood loss is given by l̂t(θ) = 2−1(X2
t /σ̂

2
t (θ) + log σ̂2

t (θ))
with first derivative

∇l̂t(θ) = ∇σ̂2
t (θ)

(
σ̂2
t (θ)−X2

t

2σ̂4
t (θ)

)
,

where ∇σ̂2
t (θ) = ϑt(θ) +

∑q
j=1 βj∇σ̂2

t−j(θ) with ϑt(θ) =

(X2
t−1−γ2, . . . , X2

t−p−γ2, σ̂2
t−1(θ)−γ2, . . . , σ̂2

t−q(θ)−γ2)T ∈ Rp+q.
Parameter space:

K =

(α1, · · · , αp, β1, . . . , βq) ∈ Rp+q
+

∣∣∣∣∣∣
p∑

i=1

αi +

q∑
j=1

βj < 1

 .
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Adaptive recursive QML estimation for GARCH(p, q) Models

Our recursive QML method relies on stochastic approximations5.

Adaptive learning with AdaGrad6, which has shown promising results
in non-convex optimization7.
Project θ̂t onto K, preventing large jumps and enforcing
convergence8.

The recursive method is given by

θ̂t = θ̂t−1 − ηt−1∇θ l̂t(θ̂t−1),

where the learning sequence (ηt) is a decreasing sequence of positive num-
bers satisfying

∑t
i=1 ηi =∞ and

∑t
i=1 η

2
i <∞ as t→∞.

5Robbins and Monro [RM51]
6Duchi, Hazan, and Singer [DHS11]
7Ward, Wu, and Bottou [WWB18]
8Zinkevich [Zin03]
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Adaptive recursive QML estimation for GARCH(p, q) Models

Our recursive QML method relies on stochastic approximations5.
Adaptive learning with AdaGrad6, which has shown promising results
in non-convex optimization7.

Project θ̂t onto K, preventing large jumps and enforcing
convergence8.

The recursive method is given by

θ̂t = θ̂t−1 −
η√∑t

i=1∇θ l̂i(θ̂i−1)2 + ϵ
∇θ l̂t(θ̂t−1),

where η, ϵ > 0.

5Robbins and Monro [RM51]
6Duchi, Hazan, and Singer [DHS11]
7Ward, Wu, and Bottou [WWB18]
8Zinkevich [Zin03]
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Adaptive recursive QML estimation for GARCH(p, q) Models

Our recursive QML method relies on stochastic approximations5.
Adaptive learning with AdaGrad6, which has shown promising results
in non-convex optimization7.
Project θ̂t onto K, preventing large jumps and enforcing
convergence8.

Our recursive method is given by

θ̂t = ProjectionK

θ̂t−1 −
η√∑t

i=1∇θ l̂i(θ̂i−1)2 + ϵ
∇θ l̂t(θ̂t−1)

 ,

where η, ϵ > 0 with parameter space K = {(α1, . . . , αp, β1, . . . , βq) ∈
Rp+q

+ |
∑p

i=1 αi +
∑q

j=1 βj < 1}.
5Robbins and Monro [RM51]
6Duchi, Hazan, and Singer [DHS11]
7Ward, Wu, and Bottou [WWB18]
8Zinkevich [Zin03]
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Applications - Real-life Observations

Real-life observations:

Consider daily log-returns (rt) of stock market indices.
GARCH(1, 1) model with initial value
θ̂0 = θ̃0 = (5 · 10−5, 0.05, 0.9)T .

Stock Market Index Period
Standard & Poor’s 500 (S&P500) Jan. 1950 - Sep. 2020

Table 1: The observations consist of daily log-returns which are defined as log
differences of the closing prices of the index between two consecutive days.

Iterative QMLE θ̃n:

Estimated at every two thousand incremental using all observations
up to this point, i.e., (θ̃t)(k−2000)+1≤t≤k is estimated using
(Xt)1≤t≤k for k = 2000, 4000, . . . , n (i.e., forward-looking with at
most 2000 observations).
We use the (bounded) L-BFGS algorithm to solve for θ̃n.
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Applications - Real-life Observations - S&P500

Figure 8: Left: Trajectory of QML estimates. Right: Log-returns rt with
confidence intervals in three different periods.
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Applications - Accuracy Score

Measure the accuracy by studying the conditional quantiles using
the predicted volatility processes9.
Under the assumption of standard Gaussian innovations, Xt is
Gaussian with zero mean and variance σ2

t .
For any α ∈ (0, 1), the α-quantile of a Gaussian distribution
N (0, σ2

t ) is σtΦ
−1(α) (Φ−1(α) is the α-quantile of the standard

Gaussian one).
The α-quantile loss function is defined as

ρα(Xt, σt) =

{
α
(
Xt − Φ−1(α)σt

)
, for Xt > Φ−1(α)σt,

(1− α)
(
Φ−1(α)σt −Xt

)
, for Xt ≤ Φ−1(α)σt,

with tilting parameter α ∈ (0, 1).

9Biau and Patra [BP11]
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Applications - Accuracy Score

We evaluate across the α-quantile scores ρα of (σt) by the
(normalized) cumulative α-quantile scoring function QSα:

QSα(Xn, σn) =
1

n

n∑
t=1

M∑
m=1

ραm
(Xt, σt),

with M as the number of quantiles α = {α1, . . . , αM}.
The lowest QSα score indicates the best ability of volatility forecast.
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Applications - Real-life Observations - S&P500

Figure 9: Boxplot of QSα scores for α = {0.01, 0.02, . . . , 0.99}, using the
GARCH(1, 1) model on the log-returns rt of S&P500 Index with random initial
value in K.
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Summary

AdaVol; an adaptive approach to recursively estimate GARCH model
parameters in a streaming setting using the VTE technique.
AdaVol’s design showed to produce robust and adaptive estimates.
Time-varying parameters was an advantage for real-life observations.
AdaVol is computationally efficient.

Model n AdaVol arch
GARCH(1, 1) 1000 1.00 204.89

2000 1.00 233.86
GARCH(2, 2) 1000 1.00 322.33

2000 1.00 328.50

Table 2: Relative speed comparison between AdaVol implementation in Python
[Wer19] and arch version 4.15 [She20]. A value of 1.00 means the method is
the fastest. A value of 204.89 means the estimation time of the method is
204.89 times larger than the fastest.
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